Multi-Sensor Fusion for UAV Classification Based on Feature Maps of Image and Radar Data
- URL: http://arxiv.org/abs/2410.16089v1
- Date: Mon, 21 Oct 2024 15:12:37 GMT
- Title: Multi-Sensor Fusion for UAV Classification Based on Feature Maps of Image and Radar Data
- Authors: Nikos Sakellariou, Antonios Lalas, Konstantinos Votis, Dimitrios Tzovaras,
- Abstract summary: We propose a system that fuses already processed multi-sensor data into a new Deep Neural Network to increase its classification accuracy towards UAV detection.
The model fuses high-level features extracted from individual object detection and classification models associated with thermal, optronic, and radar data.
- Score: 4.392337343771302
- License:
- Abstract: The unique cost, flexibility, speed, and efficiency of modern UAVs make them an attractive choice in many applications in contemporary society. This, however, causes an ever-increasing number of reported malicious or accidental incidents, rendering the need for the development of UAV detection and classification mechanisms essential. We propose a methodology for developing a system that fuses already processed multi-sensor data into a new Deep Neural Network to increase its classification accuracy towards UAV detection. The DNN model fuses high-level features extracted from individual object detection and classification models associated with thermal, optronic, and radar data. Additionally, emphasis is given to the model's Convolutional Neural Network (CNN) based architecture that combines the features of the three sensor modalities by stacking the extracted image features of the thermal and optronic sensor achieving higher classification accuracy than each sensor alone.
Related papers
- Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - One Masked Model is All You Need for Sensor Fault Detection, Isolation and Accommodation [1.0359008237358598]
We propose a novel framework for sensor fault detection using masked models and self-supervised learning.
We validate our proposed technique on both a public dataset and a real-world dataset from offshore GE wind turbines.
Our proposed technique has the potential to significantly improve the accuracy and reliability of sensor measurements in real-time.
arXiv Detail & Related papers (2024-03-24T13:44:57Z) - Resource-Efficient Gesture Recognition using Low-Resolution Thermal
Camera via Spiking Neural Networks and Sparse Segmentation [1.7758299835471887]
This work proposes a novel approach for hand gesture recognition using an inexpensive, low-resolution (24 x 32) thermal sensor.
Compared to the use of standard RGB cameras, the proposed system is insensitive to lighting variations.
This paper shows that the innovative use of the recently proposed Monostable Multivibrator (MMV) neural networks as a new class of SNN achieves more than one order of magnitude smaller memory and compute complexity.
arXiv Detail & Related papers (2024-01-12T13:20:01Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
This research paper introduces a novel modification to an object detection network that uses camera and lidar information.
It incorporates an additional branch designed for the task of re-identifying objects across adjacent cameras within the same vehicle.
The results underscore the superiority of this method over traditional Non-Maximum Suppression (NMS) techniques.
arXiv Detail & Related papers (2023-10-09T15:16:35Z) - Deep convolutional neural networks for cyclic sensor data [0.0]
This study focuses on sensor-based condition monitoring and explores the application of deep learning techniques.
Our investigation involves comparing the performance of three models: a baseline model employing conventional methods, a single CNN model with early sensor fusion, and a two-lane CNN model (2L-CNN) with late sensor fusion.
arXiv Detail & Related papers (2023-08-14T07:51:15Z) - Improved Static Hand Gesture Classification on Deep Convolutional Neural
Networks using Novel Sterile Training Technique [2.534406146337704]
Non-contact hand pose and static gesture recognition have received considerable attention in many applications.
This article presents an efficient data collection approach and a novel technique for deep CNN training by introducing sterile'' images.
Applying the proposed data collection and training methods yields an increase in classification rate of static hand gestures from $85%$ to $93%$.
arXiv Detail & Related papers (2023-05-03T11:10:50Z) - Multi-level and multi-modal feature fusion for accurate 3D object
detection in Connected and Automated Vehicles [0.8701566919381223]
This paper presents a Deep Neural Network based 3D object detection model that leverages a three-stage feature extractor.
The proposed feature extractor extracts high-level features from two input sensory modalities and recovers the important features discarded during the convolutional process.
The novel fusion scheme effectively fuses features across sensory modalities and convolutional layers to find the best representative global features.
arXiv Detail & Related papers (2022-12-15T00:25:05Z) - An Empirical Study of Adder Neural Networks for Object Detection [67.64041181937624]
Adder neural networks (AdderNets) have shown impressive performance on image classification with only addition operations.
We present an empirical study of AdderNets for object detection.
arXiv Detail & Related papers (2021-12-27T11:03:13Z) - ASFD: Automatic and Scalable Face Detector [129.82350993748258]
We propose a novel Automatic and Scalable Face Detector (ASFD)
ASFD is based on a combination of neural architecture search techniques as well as a new loss design.
Our ASFD-D6 outperforms the prior strong competitors, and our lightweight ASFD-D0 runs at more than 120 FPS with Mobilenet for VGA-resolution images.
arXiv Detail & Related papers (2020-03-25T06:00:47Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.