Neural Quantum Propagators for Driven-Dissipative Quantum Dynamics
- URL: http://arxiv.org/abs/2410.16091v1
- Date: Mon, 21 Oct 2024 15:13:17 GMT
- Title: Neural Quantum Propagators for Driven-Dissipative Quantum Dynamics
- Authors: Jiaji Zhang, Carlos L. Benavides-Riveros, Lipeng Chen,
- Abstract summary: We develop driven neural quantum propagators (NQP), a universal neural network framework that solves driven-dissipative quantum dynamics.
NQP can handle arbitrary initial quantum states, adapt to various external fields, and simulate long-time dynamics, even when trained on far shorter time windows.
We demonstrate the effectiveness of our approach by studying the spin-boson and the three-state transition Gamma models.
- Score: 0.0
- License:
- Abstract: Describing the dynamics of strong-laser driven open quantum systems is a very challenging task that requires the solution of highly involved equations of motion. While machine learning techniques are being applied with some success to simulate the time evolution of individual quantum states, their use to approximate time-dependent operators (that can evolve various states) remains largely unexplored. In this work, we develop driven neural quantum propagators (NQP), a universal neural network framework that solves driven-dissipative quantum dynamics by approximating propagators rather than wavefunctions or density matrices. NQP can handle arbitrary initial quantum states, adapt to various external fields, and simulate long-time dynamics, even when trained on far shorter time windows. Furthermore, by appropriately configuring the external fields, our trained NQP can be transferred to systems governed by different Hamiltonians. We demonstrate the effectiveness of our approach by studying the spin-boson and the three-state transition Gamma models.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Simulation of open quantum systems on universal quantum computers [15.876768787615179]
We present an innovative and scalable method to simulate open quantum systems using quantum computers.
We define an adjoint density matrix as a counterpart of the true density matrix, which reduces to a mixed-unitary quantum channel.
accurate long-time simulation can also be achieved as the adjoint density matrix and the true dissipated one converges to the same state.
arXiv Detail & Related papers (2024-05-31T09:07:27Z) - Artificial-intelligence-based surrogate solution of dissipative quantum
dynamics: physics-informed reconstruction of the universal propagator [0.0]
We introduce an artificial-intelligence-based surrogate model that solves dissipative quantum dynamics.
Our quantum neural propagator avoids time-consuming iterations and provides a universal super-operator.
arXiv Detail & Related papers (2024-02-05T07:52:04Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Combining Matrix Product States and Noisy Quantum Computers for Quantum
Simulation [0.0]
Matrix Product States (MPS) and Operators (MPO) have been proven to be a powerful tool to study quantum many-body systems.
We show that using classical knowledge in the form of tensor networks provides a way to better use limited quantum resources.
arXiv Detail & Related papers (2023-05-30T17:21:52Z) - Measuring Quantum Entanglement from Local Information by Machine
Learning [10.161394383081145]
Entanglement is a key property in the development of quantum technologies.
We present a neural network-assisted protocol for measuring entanglement in equilibrium and non-equilibrium states of local Hamiltonians.
arXiv Detail & Related papers (2022-09-18T08:15:49Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.