Artificial-intelligence-based surrogate solution of dissipative quantum
dynamics: physics-informed reconstruction of the universal propagator
- URL: http://arxiv.org/abs/2402.02788v1
- Date: Mon, 5 Feb 2024 07:52:04 GMT
- Title: Artificial-intelligence-based surrogate solution of dissipative quantum
dynamics: physics-informed reconstruction of the universal propagator
- Authors: Jiaji Zhang, Carlos L. Benavides-Riveros, Lipeng Chen
- Abstract summary: We introduce an artificial-intelligence-based surrogate model that solves dissipative quantum dynamics.
Our quantum neural propagator avoids time-consuming iterations and provides a universal super-operator.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accurate (or even approximate) solution of the equations that govern the
dynamics of dissipative quantum systems remains a challenging task for quantum
science. While several algorithms have been designed to solve those equations
with different degrees of flexibility, they rely mainly on highly expensive
iterative schemes. Most recently, deep neural networks have been used for
quantum dynamics but current architectures are highly dependent on the physics
of the particular system and usually limited to population dynamics. Here we
introduce an artificial-intelligence-based surrogate model that solves
dissipative quantum dynamics by parameterizing quantum propagators as Fourier
neural operators, which we train using both dataset and physics-informed loss
functions. Compared with conventional algorithms, our quantum neural propagator
avoids time-consuming iterations and provides a universal super-operator that
can be used to evolve any initial quantum state for arbitrarily long times. To
illustrate the wide applicability of the approach, we employ our quantum neural
propagator to compute population dynamics and time-correlation functions of the
Fenna-Matthews-Olson complex.
Related papers
- Neural Quantum Propagators for Driven-Dissipative Quantum Dynamics [0.0]
We develop driven neural quantum propagators (NQP), a universal neural network framework that solves driven-dissipative quantum dynamics.
NQP can handle arbitrary initial quantum states, adapt to various external fields, and simulate long-time dynamics, even when trained on far shorter time windows.
We demonstrate the effectiveness of our approach by studying the spin-boson and the three-state transition Gamma models.
arXiv Detail & Related papers (2024-10-21T15:13:17Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum consistent neural/tensor networks for photonic circuits with strongly/weakly entangled states [0.0]
We propose an approach to approximate the exact unitary evolution of closed entangled systems in a precise, efficient and quantum consistent manner.
By training the networks with a reasonably small number of examples of quantum dynamics, we enable efficient parameter estimation in larger Hilbert spaces.
arXiv Detail & Related papers (2024-06-03T09:51:25Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
We present an approach for tackling open quantum system dynamics.
We compactly represent quantum states with autoregressive transformer neural networks.
Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator.
arXiv Detail & Related papers (2020-09-11T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.