論文の概要: Contamination Report for Multilingual Benchmarks
- arxiv url: http://arxiv.org/abs/2410.16186v1
- Date: Mon, 21 Oct 2024 16:49:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:13:11.859877
- Title: Contamination Report for Multilingual Benchmarks
- Title(参考訳): マルチリンガルベンチマークの汚染報告
- Authors: Sanchit Ahuja, Varun Gumma, Sunayana Sitaram,
- Abstract要約: 汚染は、ベンチマークの膨らませたスコアにつながり、評価結果を損なう可能性がある。
大言語モデル(LLM)における多言語ベンチマークの汚染について検討する。
私たちの発見は、コミュニティがマルチ言語評価に最適なベンチマークセットを決定するのに役立ちます。
- 参考スコア(独自算出の注目度): 8.54436254281513
- License:
- Abstract: Benchmark contamination refers to the presence of test datasets in Large Language Model (LLM) pre-training or post-training data. Contamination can lead to inflated scores on benchmarks, compromising evaluation results and making it difficult to determine the capabilities of models. In this work, we study the contamination of popular multilingual benchmarks in LLMs that support multiple languages. We use the Black Box test to determine whether $7$ frequently used multilingual benchmarks are contaminated in $7$ popular open and closed LLMs and find that almost all models show signs of being contaminated with almost all the benchmarks we test. Our findings can help the community determine the best set of benchmarks to use for multilingual evaluation.
- Abstract(参考訳): ベンチマーク汚染(Benchmark contamination)とは、Large Language Model(LLM)の事前トレーニングまたは後トレーニングデータにテストデータセットが存在することを指す。
汚染は、ベンチマークの膨らませたスコアをもたらし、評価結果を妥協し、モデルの能力を決定するのを難しくする。
本研究では,複数の言語をサポートするLLMにおける多言語ベンチマークの汚染について検討する。
私たちはBlack Boxテストを使って、7ドルの頻繁に使われる多言語ベンチマークが7ドル人気のオープンおよびクローズドLCMで汚染されているかどうかを判断し、ほぼすべてのモデルがテスト対象のベンチマークで汚染されている兆候を示していることに気付きました。
私たちの発見は、コミュニティがマルチ言語評価に最適なベンチマークセットを決定するのに役立ちます。
関連論文リスト
- Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following [51.18383180774354]
Multi-IFは,大規模言語モデルの習熟度を多元的および多言語的指示に従って評価するための新しいベンチマークである。
Multi-IF 上での14の最先端 LLM の評価結果から,既存のベンチマークよりもはるかに難しい課題であることが判明した。
非ラテン文字(ヒンディー語、ロシア語、中国語)を持つ言語は一般的に高いエラー率を示し、モデルの多言語能力の潜在的な制限を示唆している。
論文 参考訳(メタデータ) (2024-10-21T00:59:47Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - PaCoST: Paired Confidence Significance Testing for Benchmark Contamination Detection in Large Language Models [41.772263447213234]
大規模言語モデル(LLM)は膨大な量のデータに基づいて訓練されることが知られており、意図的または故意によく使われるベンチマークのデータを含むことがある。
このインクルージョンは、モデルリーダーボードの不正な高いスコアにつながるが、現実のアプリケーションではパフォーマンスに失望する。
LLMのベンチマーク汚染を効果的に検出するPaired Confidence Significance TestingであるPaCoSTを紹介する。
論文 参考訳(メタデータ) (2024-06-26T13:12:40Z) - On the Evaluation Practices in Multilingual NLP: Can Machine Translation Offer an Alternative to Human Translations? [19.346078451375693]
NLPにおける既存の評価フレームワークについて分析する。
より堅牢で信頼性の高い評価手法を提案する。
より単純なベースラインは,大規模多言語事前学習の恩恵を受けずに比較的高い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-06-20T12:46:12Z) - Inference-Time Decontamination: Reusing Leaked Benchmarks for Large Language Model Evaluation [61.350306618479365]
ベンチマークの漏洩は、大規模言語モデルの真のパフォーマンスの正確な評価を防ぐことができる。
この問題に対処するため,ITD(Inference-Time Decontamination)を提案する。
ITDは、GSM8Kで22.9%、MMLUで19.0%の膨張精度を低下させる。
論文 参考訳(メタデータ) (2024-06-20T04:35:59Z) - Data Contamination Can Cross Language Barriers [29.103517721155487]
大規模言語モデル(LLM)の開発における不透明さは、事前学習データにおける公開ベンチマークの汚染の可能性への懸念が高まっている。
まず, 電流検出手法を回避しつつ, LLMの性能を増大させる多言語性汚染について述べる。
本稿では,このような汚染を深く隠蔽する一般化に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-06-19T05:53:27Z) - Rethinking Benchmark and Contamination for Language Models with
Rephrased Samples [49.18977581962162]
大規模な言語モデルは、これまで人間が生成したすべてのデータに基づいて、ますます訓練されている。
多くの人は、事前トレーニングや微調整のデータセットが汚染される可能性があるとして、公開ベンチマークの信頼性を懸念している。
論文 参考訳(メタデータ) (2023-11-08T17:35:20Z) - Are Large Language Model-based Evaluators the Solution to Scaling Up
Multilingual Evaluation? [20.476500441734427]
大規模言語モデル(LLM)は様々な自然言語処理(NLP)タスクに優れる。
彼らの評価、特に上位20ドルを超える言語では、既存のベンチマークとメトリクスの制限のため、依然として不十分である。
論文 参考訳(メタデータ) (2023-09-14T06:41:58Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z) - Beyond Static Models and Test Sets: Benchmarking the Potential of
Pre-trained Models Across Tasks and Languages [15.373725507698591]
本稿は,多言語評価における既存の実践を信頼できないものにし,言語環境全体にわたるMMLMの性能の全体像を提示していないことを論じる。
我々は,NLPタスクのパフォーマンス予測における最近の研究が,多言語NLPにおけるベンチマークの修正における潜在的な解決策となることを示唆する。
実験データと4つの異なる多言語データセットのケーススタディを比較し、これらの手法が翻訳に基づくアプローチとよく一致している性能の信頼性を推定できることを示した。
論文 参考訳(メタデータ) (2022-05-12T20:42:48Z) - XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating
Cross-lingual Generalization [128.37244072182506]
言語間TRansfer Evaluation of Multilinguals XTREMEは、40言語および9タスクにわたる多言語表現の言語間一般化能力を評価するためのベンチマークである。
我々は、英語でテストされたモデルは、多くのタスクにおいて人間のパフォーマンスに達するが、言語間変換されたモデルの性能にはまだ大きなギャップがあることを示した。
論文 参考訳(メタデータ) (2020-03-24T19:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。