論文の概要: On the Evaluation Practices in Multilingual NLP: Can Machine Translation Offer an Alternative to Human Translations?
- arxiv url: http://arxiv.org/abs/2406.14267v1
- Date: Thu, 20 Jun 2024 12:46:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:52:01.122580
- Title: On the Evaluation Practices in Multilingual NLP: Can Machine Translation Offer an Alternative to Human Translations?
- Title(参考訳): 多言語NLPにおける評価実践について:機械翻訳は人間翻訳の代替となるか?
- Authors: Rochelle Choenni, Sara Rajaee, Christof Monz, Ekaterina Shutova,
- Abstract要約: NLPにおける既存の評価フレームワークについて分析する。
より堅牢で信頼性の高い評価手法を提案する。
より単純なベースラインは,大規模多言語事前学習の恩恵を受けずに比較的高い性能が得られることを示す。
- 参考スコア(独自算出の注目度): 19.346078451375693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While multilingual language models (MLMs) have been trained on 100+ languages, they are typically only evaluated across a handful of them due to a lack of available test data in most languages. This is particularly problematic when assessing MLM's potential for low-resource and unseen languages. In this paper, we present an analysis of existing evaluation frameworks in multilingual NLP, discuss their limitations, and propose several directions for more robust and reliable evaluation practices. Furthermore, we empirically study to what extent machine translation offers a {reliable alternative to human translation} for large-scale evaluation of MLMs across a wide set of languages. We use a SOTA translation model to translate test data from 4 tasks to 198 languages and use them to evaluate three MLMs. We show that while the selected subsets of high-resource test languages are generally sufficiently representative of a wider range of high-resource languages, we tend to overestimate MLMs' ability on low-resource languages. Finally, we show that simpler baselines can achieve relatively strong performance without having benefited from large-scale multilingual pretraining.
- Abstract(参考訳): 多言語言語モデル(MLM)は100以上の言語で訓練されているが、ほとんどの言語で利用可能なテストデータが不足しているため、通常は少数の言語でのみ評価される。
これはMLMの低リソース言語や見当たらない言語の可能性を評価する際に特に問題となる。
本稿では,多言語NLPにおける既存の評価フレームワークの分析を行い,その限界について議論し,より堅牢で信頼性の高い評価手法を提案する。
さらに,機械翻訳が多言語にわたるMLMを大規模に評価するために,機械翻訳がいかに人間の翻訳に頼りやすい代替手段を提供するかを実証的に研究する。
我々は、SOTA翻訳モデルを用いて、4つのタスクから198言語へのテストデータを変換し、3つのMLMを評価する。
我々は、高リソーステスト言語の中から選択したサブセットが、一般的に、より広範囲の高リソース言語を十分に表しているが、低リソース言語におけるMLMの能力を過大評価する傾向にあることを示した。
最後に,より単純なベースラインは,大規模多言語事前学習の恩恵を受けずに比較的高い性能が得られることを示す。
関連論文リスト
- Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Quantifying Multilingual Performance of Large Language Models Across Languages [48.40607157158246]
大規模言語モデル(LLM)は、英語、ドイツ語、フランス語のような高リソース言語で、低リソース言語の能力は依然として不十分である。
内部表現を用いたLLM性能に基づいて,言語をベンチマークし,ランク付けするための固有測度であるLanguage Rankerを提案する。
分析の結果,高リソース言語は英語との類似度が高く,性能が優れ,低リソース言語は類似度が低いことがわかった。
論文 参考訳(メタデータ) (2024-04-17T16:53:16Z) - High-quality Data-to-Text Generation for Severely Under-Resourced
Languages with Out-of-the-box Large Language Models [5.632410663467911]
我々は、事前訓練された大規模言語モデル(LLM)が、アンダーリソース言語のパフォーマンスギャップを埋める可能性について検討する。
LLM は,低リソース言語における技術の現状を,かなりのマージンで容易に設定できることがわかった。
全ての言語について、人間の評価は最高のシステムで人間と同等のパフォーマンスを示すが、BLEUのスコアは英語に比べて崩壊する。
論文 参考訳(メタデータ) (2024-02-19T16:29:40Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - ChatGPT MT: Competitive for High- (but not Low-) Resource Languages [62.178282377729566]
大規模言語モデル(LLM)は、機械翻訳(MT)を含む様々な言語タスクの実行を暗黙的に学習する。
MTコスト分析とともに,204言語を拡張した最初の実験的な証拠を提示する。
分析の結果,ChatGPTの相対的翻訳能力を決定する上で,言語リソースレベルが最も重要な特徴であることが判明した。
論文 参考訳(メタデータ) (2023-09-14T04:36:00Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Beyond Static Models and Test Sets: Benchmarking the Potential of
Pre-trained Models Across Tasks and Languages [15.373725507698591]
本稿は,多言語評価における既存の実践を信頼できないものにし,言語環境全体にわたるMMLMの性能の全体像を提示していないことを論じる。
我々は,NLPタスクのパフォーマンス予測における最近の研究が,多言語NLPにおけるベンチマークの修正における潜在的な解決策となることを示唆する。
実験データと4つの異なる多言語データセットのケーススタディを比較し、これらの手法が翻訳に基づくアプローチとよく一致している性能の信頼性を推定できることを示した。
論文 参考訳(メタデータ) (2022-05-12T20:42:48Z) - El Departamento de Nosotros: How Machine Translated Corpora Affects
Language Models in MRC Tasks [0.12183405753834563]
大規模言語モデル(LM)の事前学習には大量のテキストコーパスが必要である。
下流自然言語処理タスクの微調整に直接翻訳コーパスを適用する際の注意点について検討する。
後処理に伴う慎重なキュレーションにより,性能が向上し,LM全体の堅牢性が向上することを示す。
論文 参考訳(メタデータ) (2020-07-03T22:22:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。