論文の概要: Verification of Neural Control Barrier Functions with Symbolic Derivative Bounds Propagation
- arxiv url: http://arxiv.org/abs/2410.16281v1
- Date: Fri, 04 Oct 2024 21:42:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 05:40:22.636547
- Title: Verification of Neural Control Barrier Functions with Symbolic Derivative Bounds Propagation
- Title(参考訳): 記号的導出境界伝搬を用いたニューラルコントロールバリア関数の検証
- Authors: Hanjiang Hu, Yujie Yang, Tianhao Wei, Changliu Liu,
- Abstract要約: 本稿では,ReLUに基づくニューラルCBFの有効検証フレームワークを提案する。
シンボル境界は、ニューラルCBFヤコビアンおよび非線形系力学の内積によって伝播可能であることを示す。
- 参考スコア(独自算出の注目度): 6.987300771372427
- License:
- Abstract: Control barrier functions (CBFs) are important in safety-critical systems and robot control applications. Neural networks have been used to parameterize and synthesize CBFs with bounded control input for complex systems. However, it is still challenging to verify pre-trained neural networks CBFs (neural CBFs) in an efficient symbolic manner. To this end, we propose a new efficient verification framework for ReLU-based neural CBFs through symbolic derivative bound propagation by combining the linearly bounded nonlinear dynamic system and the gradient bounds of neural CBFs. Specifically, with Heaviside step function form for derivatives of activation functions, we show that the symbolic bounds can be propagated through the inner product of neural CBF Jacobian and nonlinear system dynamics. Through extensive experiments on different robot dynamics, our results outperform the interval arithmetic based baselines in verified rate and verification time along the CBF boundary, validating the effectiveness and efficiency of the proposed method with different model complexity. The code can be found at https://github.com/intelligent-control-lab/ verify-neural-CBF.
- Abstract(参考訳): 制御バリア関数(CBF)は、安全クリティカルシステムやロボット制御アプリケーションにおいて重要である。
ニューラルネットワークは複雑なシステムに対する有界制御入力によるCBFのパラメータ化と合成に使用されている。
しかし、訓練済みのニューラルネットワークCBF(neural CBF)を効率的なシンボルとして検証することは依然として困難である。
この目的のために,線形境界非線形力学系とニューラルCBFの勾配境界を結合させて,シンボル微分境界伝播によるReLUに基づくニューラルCBFの効率的な検証フレームワークを提案する。
具体的には、活性化関数の導関数に対するヘビサイドステップ関数形式を用いて、ニューラルCBFヤコビアンおよび非線形系力学の内積を通じてシンボル境界が伝播可能であることを示す。
異なるロボット力学に関する広範な実験を通じて,実験結果は,CBF境界に沿った検証速度と検証時間において,間隔演算に基づくベースラインよりも優れ,モデル複雑性の異なる提案手法の有効性と有効性を検証した。
コードはhttps://github.com/intelligent-control-lab/ verify-neural-CBFで見ることができる。
関連論文リスト
- Score-based Neural Ordinary Differential Equations for Computing Mean Field Control Problems [13.285775352653546]
本稿では,ディープニューラルネットワークに基づく一階および二階のスコア関数を表すニューラルディファレンシャル方程式のシステムを提案する。
本研究では,個々の雑音に対する平均粘性場制御(MFC)問題を,提案したニューラルODEシステムによって構成された制約のない最適化問題に再構成する。
論文 参考訳(メタデータ) (2024-09-24T21:45:55Z) - Exact Verification of ReLU Neural Control Barrier Functions [25.44521208451216]
制御バリア関数(CBF)は非線形システムの安全な制御のための一般的なアプローチである。
CBFをニューラルネットワークとして表現する最近の機械学習手法は、非常に有望である。
本稿では,ReLU アクティベーション機能付きフィードフォワード NCBF の安全性を検証するための,新しい正確な条件とアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-13T18:59:04Z) - Safe Neural Control for Non-Affine Control Systems with Differentiable
Control Barrier Functions [58.19198103790931]
本稿では,非アフィン制御系における安全クリティカル制御の問題に対処する。
制御バリア関数(CBF)を用いて,状態制約と制御制約の2次コストの最適化を2次プログラムのシーケンス(QP)にサブ最適化できることが示されている。
我々は,高次CBFをニューラル常微分方程式に基づく学習モデルに差分CBFとして組み込んで,非アフィン制御系の安全性を保証する。
論文 参考訳(メタデータ) (2023-09-06T05:35:48Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Interval Reachability of Nonlinear Dynamical Systems with Neural Network
Controllers [5.543220407902113]
本稿では、ニューラルネットワークコントローラを用いた非線形連続時間力学系の厳密な検証のための区間解析に基づく計算効率の良いフレームワークを提案する。
混合単調理論に着想を得て,ニューラルネットワークの包摂関数と開ループシステムの分解関数を用いて,閉ループ力学をより大きなシステムに組み込む。
埋め込みシステムの単一軌跡を用いて、到達可能な集合の超矩形超近似を効率的に計算できることが示される。
論文 参考訳(メタデータ) (2023-01-19T06:46:36Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
本稿では,ニューラルネットワークにおける信頼割当を行うための予測フォワード(PFF)アルゴリズムを提案する。
我々は,有向生成回路と表現回路を同時に同時に学習する,新しい動的リカレントニューラルネットワークを設計する。
PFFは効率よく学習し、学習信号を伝達し、フォワードパスのみでシナプスを更新する。
論文 参考訳(メタデータ) (2023-01-04T05:34:48Z) - A Theoretical Overview of Neural Contraction Metrics for Learning-based
Control with Guaranteed Stability [7.963506386866862]
本稿では,最適縮尺と対応する微分リャプノフ関数のニューラルネットワークモデルを提案する。
そのイノベーションは、学習ベースの制御フレームワークに対して、正式な堅牢性を保証することである。
論文 参考訳(メタデータ) (2021-10-02T00:28:49Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
制御障壁関数(CBF)に基づく安全な制御器合成のための学習に基づくアプローチを提案する。
最適化に基づくCBFの学習手法を解析し、基礎となる力学系のリプシッツ仮定の下で証明可能な安全保証を享受する。
私たちの知る限りでは、これらはデータから確実に安全な制御障壁関数を学習する最初の結果です。
論文 参考訳(メタデータ) (2020-04-07T12:29:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。