論文の概要: InsightSee: Advancing Multi-agent Vision-Language Models for Enhanced Visual Understanding
- arxiv url: http://arxiv.org/abs/2405.20795v1
- Date: Fri, 31 May 2024 13:56:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:37:39.473851
- Title: InsightSee: Advancing Multi-agent Vision-Language Models for Enhanced Visual Understanding
- Title(参考訳): InsightSee: 視覚理解の強化を目的としたマルチエージェントビジョンランゲージモデルの改善
- Authors: Huaxiang Zhang, Yaojia Mu, Guo-Niu Zhu, Zhongxue Gan,
- Abstract要約: 本稿では,複雑な視覚理解シナリオを扱う上で,視覚言語モデルの能力を高めるためのマルチエージェントフレームワークであるInsightSeeを提案する。
このフレームワークは、視覚情報解釈のプロセスを洗練するために統合される記述エージェントと、2つの推論エージェントと決定エージェントとを含む。
このフレームワークは、9つのベンチマークテストのうち6つで最先端のアルゴリズムよりも優れており、マルチモーダル理解が大幅に進歩している。
- 参考スコア(独自算出の注目度): 12.082379948480257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate visual understanding is imperative for advancing autonomous systems and intelligent robots. Despite the powerful capabilities of vision-language models (VLMs) in processing complex visual scenes, precisely recognizing obscured or ambiguously presented visual elements remains challenging. To tackle such issues, this paper proposes InsightSee, a multi-agent framework to enhance VLMs' interpretative capabilities in handling complex visual understanding scenarios. The framework comprises a description agent, two reasoning agents, and a decision agent, which are integrated to refine the process of visual information interpretation. The design of these agents and the mechanisms by which they can be enhanced in visual information processing are presented. Experimental results demonstrate that the InsightSee framework not only boosts performance on specific visual tasks but also retains the original models' strength. The proposed framework outperforms state-of-the-art algorithms in 6 out of 9 benchmark tests, with a substantial advancement in multimodal understanding.
- Abstract(参考訳): 正確な視覚的理解は、進歩する自律システムとインテリジェントロボットにとって不可欠である。
複雑な視覚シーンの処理における視覚言語モデル(VLM)の強力な能力にもかかわらず、曖昧または曖昧に提示された視覚要素を正確に認識することは依然として困難である。
本稿では,複雑な視覚的理解シナリオを扱う上で,VLMの解釈能力を高めるためのマルチエージェントフレームワークであるInsightSeeを提案する。
このフレームワークは、視覚情報解釈のプロセスを洗練するために統合される記述エージェントと、2つの推論エージェントと決定エージェントとを含む。
これらのエージェントの設計と、それらが視覚情報処理において強化されるメカニズムを示す。
実験の結果、InsightSeeフレームワークは特定の視覚的タスクのパフォーマンスを向上するだけでなく、オリジナルのモデルの強度も維持していることがわかった。
このフレームワークは、9つのベンチマークテストのうち6つで最先端のアルゴリズムよりも優れており、マルチモーダル理解が大幅に進歩している。
関連論文リスト
- Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models [50.98559225639266]
6つのタスクカテゴリにまたがる18のベンチマークを用いて,異なるエンコーダ層からの視覚的特徴の寄与について検討した。
この結果から,多層構造はタスク依存性の相補的な長所を提供し,均一な融合が最適以下の性能をもたらすことが明らかとなった。
テキスト命令に基づいて動的に多層視覚特徴を統合する命令誘導型視覚アグリゲータを提案する。
論文 参考訳(メタデータ) (2024-12-26T05:41:31Z) - Inst-IT: Boosting Multimodal Instance Understanding via Explicit Visual Prompt Instruction Tuning [125.79428219851289]
Inst-ITは、明示的な視覚的プロンプトインストラクションチューニングを通じてインスタンス理解におけるLMMを強化するソリューションである。
Inst-ITは、マルチモーダルなインスタンスレベルの理解を診断するためのベンチマーク、大規模命令チューニングデータセット、継続的命令チューニングトレーニングパラダイムで構成されている。
論文 参考訳(メタデータ) (2024-12-04T18:58:10Z) - VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use [74.39058448757645]
視覚言語モデル(VLM)を強化するエージェントフレームワークであるVipActを提案する。
VipActは、タスク要求の分析、計画、調整を管理するオーケストレータエージェントと、特定のタスクを処理する専門エージェントで構成される。
様々な視覚認知タスクを特徴とするベンチマーク上でのVipActの評価を行い,実験結果から大幅な性能向上が得られた。
論文 参考訳(メタデータ) (2024-10-21T18:10:26Z) - X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs [49.30255148577368]
X-FormerはCLとMIMの相補的な強度を利用するために設計された軽量トランスフォーマーモジュールである。
X-Formerは、2つの凍結した視覚エンコーダから視覚言語表現学習とマルチモーダル・マルチモーダル生成学習をブートストラップする。
さらに、凍結したLLMから視覚から言語への生成学習をブートストラップし、X-Formerの視覚的特徴をLLMで解釈できるようにする。
論文 参考訳(メタデータ) (2024-07-18T18:39:54Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - MR-MLLM: Mutual Reinforcement of Multimodal Comprehension and Vision Perception [24.406224705072763]
Mutually Reinforced Multimodal Large Language Model (MR-MLLM) は視覚知覚とマルチモーダル理解を高める新しいフレームワークである。
まず、視覚モデルからの詳細な視覚入力と言語モデルの言語深度を調和させるために、共有クエリ融合機構を提案する。
第2に、視覚知覚出力から新たなモダリティを取り入れた、知覚強化型クロスモーダル積分法を提案する。
論文 参考訳(メタデータ) (2024-06-22T07:10:36Z) - Question Aware Vision Transformer for Multimodal Reasoning [14.188369270753347]
マルチモーダル推論のための質問認識型視覚変換器QA-ViTを提案する。
視覚エンコーダに直接質問認識を埋め込む。
この統合により、仮定された問題に関連性のある画像の側面に焦点を当てた動的視覚的特徴が得られる。
論文 参考訳(メタデータ) (2024-02-08T08:03:39Z) - De-fine: Decomposing and Refining Visual Programs with Auto-Feedback [75.62712247421146]
De-fineは、複雑なタスクを単純なサブタスクに分解し、オートフィードバックを通じてプログラムを洗練する、トレーニング不要のフレームワークである。
様々な視覚的タスクに対する我々の実験は、De-fineがより堅牢なプログラムを生成することを示している。
論文 参考訳(メタデータ) (2023-11-21T06:24:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。