論文の概要: The Duality of Generative AI and Reinforcement Learning in Robotics: A Review
- arxiv url: http://arxiv.org/abs/2410.16411v2
- Date: Fri, 18 Jul 2025 16:46:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 14:33:31.211298
- Title: The Duality of Generative AI and Reinforcement Learning in Robotics: A Review
- Title(参考訳): ロボットにおける生成AIと強化学習の両立
- Authors: Angelo Moroncelli, Vishal Soni, Marco Forgione, Dario Piga, Blerina Spahiu, Loris Roveda,
- Abstract要約: 生成型AIと強化学習(RL)は、情報フローを入力として取り、インテリジェントな振る舞いを生成するAIエージェントに何ができるかを再定義してきた。
本稿では,ロボット工学の発展のために,生成型AIモデルとRLの統合について検討する。
- 参考スコア(独自算出の注目度): 0.818052289014297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, generative AI and reinforcement learning (RL) have been redefining what is possible for AI agents that take information flows as input and produce intelligent behavior. As a result, we are seeing similar advancements in embodied AI and robotics for control policy generation. Our review paper examines the integration of generative AI models with RL to advance robotics. Our primary focus is on the duality between generative AI and RL for robotics downstream tasks. Specifically, we investigate: (1) The role of prominent generative AI tools as modular priors for multi-modal input fusion in RL tasks. (2) How RL can train, fine-tune and distill generative models for policy generation, such as VLA models, similarly to RL applications in large language models. We then propose a new taxonomy based on a considerable amount of selected papers. Lastly, we identify open challenges accounting for model scalability, adaptation and grounding, giving recommendations and insights on future research directions. We reflect on which generative AI models best fit the RL tasks and why. On the other side, we reflect on important issues inherent to RL-enhanced generative policies, such as safety concerns and failure modes, and what are the limitations of current methods. A curated collection of relevant research papers is maintained on our GitHub repository, serving as a resource for ongoing research and development in this field: https://github.com/clmoro/Robotics-RL-FMs-Integration.
- Abstract(参考訳): 近年,情報フローを入力として取得し,知的行動を生成するAIエージェントにできることを再定義している。
結果として、我々は、制御ポリシー生成のためのAIとロボティクスの具体化において、同様の進歩を見せている。
本稿では,ロボット工学の発展のために,生成型AIモデルとRLの統合について検討する。
私たちの主な焦点は、ロボット工学の下流タスクにおける生成AIとRLの二重性です。
具体的には、(1)RLタスクにおけるマルチモーダル入力融合のモジュラー先駆者としての顕著な生成AIツールの役割について検討する。
2) 大規模言語モデルにおけるRLの適用と同様に,VLAモデルのような政策生成のためのRLの訓練,微調整,蒸留を行う方法について検討する。
そこで我々は,選択された論文のかなりの量に基づく新しい分類法を提案する。
最後に,モデル拡張性,適応性,接地性を考慮したオープンな課題を特定し,今後の研究方向性に関する推奨と洞察を与える。
生成AIモデルがRLタスクに最も適している理由を考察する。
一方、安全上の懸念や障害モードなど、RLに強化されたジェネレーティブポリシーに固有の重要な問題や、現在の手法の限界について考察する。
関連研究論文のキュレートされたコレクションはGitHubリポジトリに保管されており、この分野で進行中の研究と開発のためのリソースとして役立っている。
関連論文リスト
- Maximizing Confidence Alone Improves Reasoning [48.83927980325788]
RENT: エントロピー最小化による強化学習(Reinforcement Learning via Entropy Minimization)は、完全な教師なしのRL手法であり、外部の報酬や地道的な回答を必要としない。
得られた回答に高いモデル信頼をもたらす思考の連鎖を強化することで、モデルは推論能力を向上させる。
論文 参考訳(メタデータ) (2025-05-28T17:59:37Z) - MoRE: Unlocking Scalability in Reinforcement Learning for Quadruped Vision-Language-Action Models [34.138699712315]
本稿では、四足歩行ロボットのためのロボット専門家(MoRE)の混合であるビジョンアクション(VLA)モデルを提案する。
MoREは、複数の低ランク適応モジュールを、密集したマルチモーダルな大規模言語モデルの中で異なる専門家として統合する。
実験によると、MoREは6つの異なるスキルで全てのベースラインを上回り、アウト・オブ・ディストリビューションシナリオにおいて優れた一般化能力を示す。
論文 参考訳(メタデータ) (2025-03-11T03:13:45Z) - MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
我々はMeta MLGymとMLGym-Benchを紹介した。これはAI研究タスクにおける大規模言語モデルの評価と開発のための新しいフレームワークとベンチマークである。
これは機械学習(ML)タスクのための最初のGym環境であり、そのようなエージェントをトレーニングするための強化学習(RL)アルゴリズムの研究を可能にする。
我々は、Claude-3.5-Sonnet、Llama-3.1 405B、GPT-4o、o1-preview、Gemini-1.5 Proなどのベンチマークで、多くのフロンティア大言語モデル(LLM)を評価した。
論文 参考訳(メタデータ) (2025-02-20T12:28:23Z) - Multi-Agent Reinforcement Learning for Autonomous Driving: A Survey [14.73689900685646]
強化学習(Reinforcement Learning, RL)は、シーケンシャルな意思決定のための強力なツールであり、人間の能力を超えるパフォーマンスを達成した。
マルチエージェントシステム領域におけるRLの拡張として、マルチエージェントRL(MARL)は制御ポリシーを学ぶだけでなく、環境内の他のすべてのエージェントとの相互作用についても考慮する必要がある。
シミュレーターは、RLの基本である現実的なデータを得るのに不可欠である。
論文 参考訳(メタデータ) (2024-08-19T03:31:20Z) - Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes [44.619927796194915]
強化学習(RL)は、広範囲のアプリケーションで非常に有望である。
ロボットの問題は、物理世界との相互作用の複雑さとコストから起因して、RLの応用に根本的な困難をもたらす。
この調査は、RLの能力を活用して一般的な実世界のロボットシステムを構築するための、RLの実践者とロボティクスの両方に洞察を提供するように設計されている。
論文 参考訳(メタデータ) (2024-08-07T04:35:38Z) - Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation [8.940998315746684]
ロボットアームのエンドタスクに対するモデルベース強化学習(RL)アプローチを提案する。
我々はベイズニューラルネットワークモデルを用いて、探索中に動的モデルに符号化された信念と情報の両方を確率論的に表現する。
実験により,ベイズモデルに基づくRL手法の利点が示された。
論文 参考訳(メタデータ) (2024-04-02T11:44:37Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning [82.46975428739329]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
ビジョンファウンデーションモデル(VFM)は、幅広いAIアプリケーションのための強力なビルディングブロックとして機能する。
総合的なトレーニングデータの不足、マルチセンサー統合の必要性、多様なタスク固有のアーキテクチャは、VFMの開発に重大な障害をもたらす。
本稿では、自動運転に特化したVFMを鍛造する上で重要な課題について述べるとともに、今後の方向性を概説する。
論文 参考訳(メタデータ) (2024-01-16T01:57:24Z) - Learn From Model Beyond Fine-Tuning: A Survey [78.80920533793595]
Learn From Model (LFM) は、モデルインターフェースに基づいた基礎モデル(FM)の研究、修正、設計に焦点を当てている。
LFM技術の研究は、モデルチューニング、モデル蒸留、モデル再利用、メタラーニング、モデル編集の5つの分野に大別できる。
本稿では, LFM の観点から, FM に基づく現在の手法を概観する。
論文 参考訳(メタデータ) (2023-10-12T10:20:36Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformerは元々自然言語処理用に開発されたもので、コンピュータビジョンでも大きな成功を収めている。
既存の開発をアーキテクチャ拡張と軌道最適化の2つのカテゴリに分類する。
ロボット操作,テキストベースのゲーム,ナビゲーション,自律運転におけるTRLの主な応用について検討する。
論文 参考訳(メタデータ) (2022-12-29T03:15:59Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
我々は,有望なスケーラブルなモデル特性を示す,ロボティクストランスフォーマーと呼ばれるモデルクラスを提示する。
実世界の課題を遂行する実ロボットの大規模データ収集に基づいて,様々なモデルクラスと,データサイズ,モデルサイズ,データの多様性の関数として一般化する能力について検証した。
論文 参考訳(メタデータ) (2022-12-13T18:55:15Z) - SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via
Differentiable Physics-Based Simulation and Rendering [49.78647219715034]
本稿では,SAM-RL と呼ばれる感性認識モデルに基づく強化学習システムを提案する。
SAM-RLは、センサーを意識した学習パイプラインによって、ロボットがタスクプロセスを監視するための情報的視点を選択することを可能にする。
我々は,ロボット組立,ツール操作,変形可能なオブジェクト操作という3つの操作タスクを達成するための実世界の実験に,我々のフレームワークを適用した。
論文 参考訳(メタデータ) (2022-10-27T05:30:43Z) - Masked World Models for Visual Control [90.13638482124567]
視覚表現学習と動的学習を分離する視覚モデルに基づくRLフレームワークを提案する。
提案手法は,様々な視覚ロボット作業における最先端性能を実現する。
論文 参考訳(メタデータ) (2022-06-28T18:42:27Z) - Training and Evaluation of Deep Policies using Reinforcement Learning
and Generative Models [67.78935378952146]
GenRLはシーケンシャルな意思決定問題を解決するためのフレームワークである。
強化学習と潜在変数生成モデルの組み合わせを利用する。
最終方針訓練の性能に最も影響を与える生成モデルの特徴を実験的に決定する。
論文 参考訳(メタデータ) (2022-04-18T22:02:32Z) - Robot Learning of Mobile Manipulation with Reachability Behavior Priors [38.49783454634775]
モバイルマニピュレーション(MM)システムは、非構造化現実環境におけるパーソナルアシスタントの役割を引き継ぐ上で理想的な候補である。
その他の課題として、MMは移動性と操作性の両方を必要とするタスクを実行するために、ロボットの実施形態を効果的に調整する必要がある。
本研究では,アクタ批判的RL手法におけるロボットの到達可能性の先行性の統合について検討した。
論文 参考訳(メタデータ) (2022-03-08T12:44:42Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - Model-based actor-critic: GAN (model generator) + DRL (actor-critic) =>
AGI [0.0]
本稿ではアクター批判的(モデルフリー)アーキテクチャに(生成的/予測的)環境モデルを追加することを提案する。
提案するAIモデルは(モデルフリーの)DDPGに似ているため、モデルベースDDPGと呼ばれる。
モデルベースアクター批判におけるDRLとGANは,各タスクを(モデルフリーの)DDPGと同等の性能で解決するために,段階的な目標駆動知性を必要とすることを示した。
論文 参考訳(メタデータ) (2020-04-04T02:05:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。