論文の概要: Series-to-Series Diffusion Bridge Model
- arxiv url: http://arxiv.org/abs/2411.04491v1
- Date: Thu, 07 Nov 2024 07:37:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:51.636582
- Title: Series-to-Series Diffusion Bridge Model
- Title(参考訳): 直列-直列拡散ブリッジモデル
- Authors: Hao Yang, Zhanbo Feng, Feng Zhou, Robert C Qiu, Zenan Ling,
- Abstract要約: 既存の拡散法を包含する包括的フレームワークを提案する。
拡散に基づく新しい時系列予測モデルであるシリーズ・ツー・シリーズ拡散ブリッジモデル(mathrmS2DBM$)を提案する。
実験の結果,$mathrmS2DBM$はポイントツーポイント予測において優れた性能を示すことがわかった。
- 参考スコア(独自算出の注目度): 8.590453584544386
- License:
- Abstract: Diffusion models have risen to prominence in time series forecasting, showcasing their robust capability to model complex data distributions. However, their effectiveness in deterministic predictions is often constrained by instability arising from their inherent stochasticity. In this paper, we revisit time series diffusion models and present a comprehensive framework that encompasses most existing diffusion-based methods. Building on this theoretical foundation, we propose a novel diffusion-based time series forecasting model, the Series-to-Series Diffusion Bridge Model ($\mathrm{S^2DBM}$), which leverages the Brownian Bridge process to reduce randomness in reverse estimations and improves accuracy by incorporating informative priors and conditions derived from historical time series data. Experimental results demonstrate that $\mathrm{S^2DBM}$ delivers superior performance in point-to-point forecasting and competes effectively with other diffusion-based models in probabilistic forecasting.
- Abstract(参考訳): 拡散モデルは時系列予測において顕著になり、複雑なデータ分布をモデル化する堅牢な能力を示している。
しかしながら、決定論的予測におけるそれらの有効性は、その固有の確率性から生じる不安定性によって制約されることが多い。
本稿では,時系列拡散モデルを再検討し,既存の拡散法を包含する包括的枠組みを提案する。
この理論の基礎を基礎として,Bownian Bridgeプロセスを利用した拡散型時系列予測モデル(Series-to-Series Diffusion Bridge Model)(S^2DBM}$)を提案する。
実験の結果,$\mathrm{S^2DBM}$は点対点予測において優れた性能を示し,確率予測において他の拡散モデルと効果的に競合することを示した。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Fine-Tuning Image-Conditional Diffusion Models is Easier than You Think [53.2706196341054]
認識された非効率性は、これまで気付かれなかった推論パイプラインの欠陥によって引き起こされたことを示している。
タスク固有の損失を伴う単一ステップモデル上でエンドツーエンドの微調整を行い、他の拡散に基づく深さモデルや正規推定モデルよりも優れた決定論的モデルを得る。
論文 参考訳(メタデータ) (2024-09-17T16:58:52Z) - Stochastic Diffusion: A Diffusion Probabilistic Model for Stochastic Time Series Forecasting [8.232475807691255]
本稿では,データ駆動型事前知識を各ステップで学習する新しい拡散(StochDiff)モデルを提案する。
学習された事前知識は、複雑な時間的ダイナミクスとデータ固有の不確実性を捉えるのに役立つ。
論文 参考訳(メタデータ) (2024-06-05T00:13:38Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
本稿では,p(mathbfx)$以前の拡散生成モデルとブラックボックス制約,あるいは関数$r(mathbfx)$からなるモデルにおいて,データ上の後部サンプルである $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$について検討する。
我々は,データフリー学習目標である相対軌道バランスの正しさを,サンプルから抽出した拡散モデルの訓練のために証明する。
論文 参考訳(メタデータ) (2024-05-31T16:18:46Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process [26.661721555671626]
本稿では,最先端の予測性能を実現する新しい多粒度時系列(MG-TSD)モデルを提案する。
われわれのアプローチは外部データに頼らず、様々な領域にまたがって汎用的で適用可能である。
論文 参考訳(メタデータ) (2024-03-09T01:15:03Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Precipitation nowcasting with generative diffusion models [0.0]
降水処理における拡散モデルの有効性について検討した。
本研究は, 確立されたU-Netモデルの性能と比較したものである。
論文 参考訳(メタデータ) (2023-08-13T09:51:16Z) - Predict, Refine, Synthesize: Self-Guiding Diffusion Models for
Probabilistic Time Series Forecasting [10.491628898499684]
時系列の非条件学習拡散モデルであるTSDiffを提案する。
提案する自己誘導機構により、補助的ネットワークやトレーニング手順の変更を必要とせず、推論中に下流タスクに対してTSDiffを条件付けることができる。
本研究では,予測,改良,合成データ生成という3つの時系列タスクにおいて,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-21T10:56:36Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。