論文の概要: Secure Computation and Trustless Data Intermediaries in Data Spaces
- arxiv url: http://arxiv.org/abs/2410.16442v1
- Date: Mon, 21 Oct 2024 19:10:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:26:54.378992
- Title: Secure Computation and Trustless Data Intermediaries in Data Spaces
- Title(参考訳): データ空間におけるセキュアな計算と信頼性のないデータ仲介
- Authors: Christoph Fabianek, Stephan Krenn, Thomas Loruenser, Veronika Siska,
- Abstract要約: 本稿では,データ空間におけるセキュアな計算のための高度な暗号技術の統合について検討する。
We exploit the introduced secure method、すなわち Secure Multi-Party Computation (MPC) と Fully Homomorphic Encryption (FHE) を利用する。
我々は、航空交通管理、製造、二次データ利用など、実世界のユースケースを通じてソリューションを提示する。
- 参考スコア(独自算出の注目度): 0.44998333629984877
- License:
- Abstract: This paper explores the integration of advanced cryptographic techniques for secure computation in data spaces to enable secure and trusted data sharing, which is essential for the evolving data economy. In addition, the paper examines the role of data intermediaries, as outlined in the EU Data Governance Act, in data spaces and specifically introduces the idea of trustless intermediaries that do not have access to their users' data. Therefore, we exploit the introduced secure computation methods, i.e. Secure Multi-Party Computation (MPC) and Fully Homomorphic Encryption (FHE), and discuss the security benefits. Overall, we identify and address key challenges for integration, focusing on areas such as identity management, policy enforcement, node selection, and access control, and present solutions through real-world use cases, including air traffic management, manufacturing, and secondary data use. Furthermore, through the analysis of practical applications, this work proposes a comprehensive framework for the implementation and standardization of secure computing technologies in dynamic, trustless data environments, paving the way for future research and development of a secure and interoperable data ecosystem.
- Abstract(参考訳): 本稿では、データ空間におけるセキュアな計算のための高度な暗号技術の統合について検討し、データ経済の発展に欠かせないセキュアで信頼性の高いデータ共有を実現する。
さらに、EUデータガバナンス法で概説されているように、データ空間におけるデータ仲介の役割について検討し、特にユーザーのデータにアクセスできない信頼性のない仲介者の考え方を紹介した。
そこで, セキュアマルチパーティ計算 (MPC) と完全同型暗号化 (FHE) という, 導入したセキュアな計算手法を活用し, セキュリティ上のメリットについて議論する。
全体として、我々は、アイデンティティ管理、ポリシー執行、ノードの選択、アクセス制御といった分野に注目し、航空交通管理、製造、二次データ利用を含む現実のユースケースを通じてソリューションを提示する、統合の鍵となる課題を特定し、解決する。
さらに,本研究は,実践的応用の分析を通じて,動的で信頼性のないデータ環境におけるセキュアなコンピューティング技術の実装と標準化のための包括的枠組みを提案する。
関連論文リスト
- Efficient and Secure Cross-Domain Data-Sharing for Resource-Constrained Internet of Things [2.5284780091135994]
モノのインターネットのための効率的なセキュアなブロックチェーンベースのデータ共有方式を提案する。
まず,単一障害点を回避する分散鍵生成方式を提案する。
また、このスキームは完全なデータ共有プロセスを提供し、データのアップロード、ストレージ、共有をカバーし、データのトレーサビリティ、完全性、プライバシーを保証する。
論文 参考訳(メタデータ) (2024-11-14T06:53:03Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - CaPS: Collaborative and Private Synthetic Data Generation from Distributed Sources [5.898893619901382]
分散データホルダから合成データの協調的かつプライベートな生成のためのフレームワークを提案する。
我々は信頼されたアグリゲータをセキュアなマルチパーティ計算プロトコルに置き換え、差分プライバシー(DP)を介してプライバシを出力する。
MWEM+PGMおよびAIMの最先端選択測度生成アルゴリズムに対するアプローチの適用性とスケーラビリティを実証する。
論文 参考訳(メタデータ) (2024-02-13T17:26:32Z) - A Blockchain-based Model for Securing Data Pipeline in a Heterogeneous
Information System [0.0]
この記事では、異種情報システムにおけるデータパイプラインを保護するためのブロックチェーンベースのモデルを提案する。
このモデルは、データの完全性、機密性、信頼性を分散的に保証するように設計されている。
論文 参考訳(メタデータ) (2024-01-17T14:40:09Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Securing Data Platforms: Strategic Masking Techniques for Privacy and
Security for B2B Enterprise Data [0.0]
ビジネス・ツー・ビジネス(B2B)企業はますますデータプラットフォームを構築しています。
データプライバシとセキュリティを本質的にサポートするメカニズムで、これらのデータプラットフォームを設計することが重要になっている。
データマスキングは、データプラットフォームアーキテクチャの重要な特徴である。
論文 参考訳(メタデータ) (2023-12-06T05:04:37Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - A Survey of Secure Computation Using Trusted Execution Environments [80.58996305474842]
本稿では、TEEベースのセキュアな計算プロトコルの体系的なレビューと比較を行う。
まず、セキュアな計算プロトコルを3つの主要なカテゴリ、すなわち、セキュアなアウトソース計算、セキュアな分散計算、セキュアなマルチパーティ計算に分類する分類法を提案する。
これらの基準に基づき,汎用計算関数と特殊目的計算の両方に対して,最先端のTEEベースのセキュアな計算プロトコルを検証,検討し,比較する。
論文 参考訳(メタデータ) (2023-02-23T16:33:56Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - A big data intelligence marketplace and secure analytics experimentation
platform for the aviation industry [0.0]
本稿では,新しい航空データおよびインテリジェンス市場を提供するICARUSビッグデータ対応プラットフォームを紹介する。
データ収集、データキュレーション、データ探索から、データ統合とデータ分析まで、完全なビッグデータライフサイクルを総括的に処理します。
論文 参考訳(メタデータ) (2021-11-18T18:51:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。