論文の概要: QIXAI: A Quantum-Inspired Framework for Enhancing Classical and Quantum Model Transparency and Understanding
- arxiv url: http://arxiv.org/abs/2410.16537v1
- Date: Mon, 21 Oct 2024 21:55:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:30:39.905697
- Title: QIXAI: A Quantum-Inspired Framework for Enhancing Classical and Quantum Model Transparency and Understanding
- Title(参考訳): QIXAI: 古典的および量子的モデルの透明性と理解を高めるための量子インスパイアされたフレームワーク
- Authors: John M. Willis,
- Abstract要約: ディープラーニングモデルは、解釈可能性の欠如によってしばしば妨げられ、それらを"ブラックボックス"にする。
本稿では、量子インスピレーションによるニューラルネットワークの解釈性向上のための新しいアプローチであるQIXAIフレームワークを紹介する。
このフレームワークは量子システムと古典システムの両方に適用され、様々なモデルにおける解釈可能性と透明性を改善する可能性を示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The impressive performance of deep learning models, particularly Convolutional Neural Networks (CNNs), is often hindered by their lack of interpretability, rendering them "black boxes." This opacity raises concerns in critical areas like healthcare, finance, and autonomous systems, where trust and accountability are crucial. This paper introduces the QIXAI Framework (Quantum-Inspired Explainable AI), a novel approach for enhancing neural network interpretability through quantum-inspired techniques. By utilizing principles from quantum mechanics, such as Hilbert spaces, superposition, entanglement, and eigenvalue decomposition, the QIXAI framework reveals how different layers of neural networks process and combine features to make decisions. We critically assess model-agnostic methods like SHAP and LIME, as well as techniques like Layer-wise Relevance Propagation (LRP), highlighting their limitations in providing a comprehensive view of neural network operations. The QIXAI framework overcomes these limitations by offering deeper insights into feature importance, inter-layer dependencies, and information propagation. A CNN for malaria parasite detection is used as a case study to demonstrate how quantum-inspired methods like Singular Value Decomposition (SVD), Principal Component Analysis (PCA), and Mutual Information (MI) provide interpretable explanations of model behavior. Additionally, we explore the extension of QIXAI to other architectures, including Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks, Transformers, and Natural Language Processing (NLP) models, and its application to generative models and time-series analysis. The framework applies to both quantum and classical systems, demonstrating its potential to improve interpretability and transparency across a range of models, advancing the broader goal of developing trustworthy AI systems.
- Abstract(参考訳): ディープラーニングモデルの印象的なパフォーマンス、特に畳み込みニューラルネットワーク(CNN)は、解釈可能性の欠如によってしばしば妨げられ、それらが"ブラックボックス"になる。
この不透明さは、信頼と説明責任が不可欠である医療、金融、自律システムといった重要な領域における懸念を提起する。
本稿ではQIXAIフレームワーク(Quantum-Inspired Explainable AI)を紹介する。
ヒルベルト空間、重畳、絡み合い、固有値分解などの量子力学の原理を活用することで、QIXAIフレームワークは、異なるニューラルネットワークの層がどのように処理し、機能を組み合わせて意思決定するかを明らかにする。
SHAPやLIMEのようなモデルに依存しない手法や、レイヤワイド・レバレンス・プロパゲーション(LRP)のような手法を批判的に評価し、ニューラルネットワーク操作の包括的なビューを提供する際の制限を強調します。
QIXAIフレームワークは、機能の重要性、層間依存関係、情報伝達に関する深い洞察を提供することで、これらの制限を克服する。
マラリア原虫検出のためのCNNは、特異値分解(SVD)、主成分分析(PCA)、相互情報(MI)といった量子インスパイアされた手法がどのようにモデル行動の解釈可能な説明を提供するかを示すケーススタディとして用いられる。
さらに、QIXAIをRNN(Recurrent Neural Networks)、Long Short-Term Memory(LSTM)ネットワーク、Transformer、Natural Language Processing(NLP)モデルなど他のアーキテクチャに拡張することや、生成モデルや時系列解析への応用についても検討する。
このフレームワークは量子システムと古典システムの両方に適用され、さまざまなモデルの解釈可能性と透明性を向上させる可能性を示し、信頼できるAIシステムを開発するというより広範な目標を推進している。
関連論文リスト
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
現代のAIシステムはニューラルネットワーク上に構築されることが多い。
古典的ニューラルネットワーク層を量子層に置き換える枠組みを提案する。
画像分類データセットの数値実験を行い、量子部品の体系的導入による性能変化を実証する。
論文 参考訳(メタデータ) (2024-09-26T07:01:29Z) - CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - From Graphs to Qubits: A Critical Review of Quantum Graph Neural Networks [56.51893966016221]
量子グラフニューラルネットワーク(QGNN)は、量子コンピューティングとグラフニューラルネットワーク(GNN)の新たな融合を表す。
本稿では,QGNNの現状を批判的にレビューし,様々なアーキテクチャを探求する。
我々は、高エネルギー物理学、分子化学、ファイナンス、地球科学など多種多様な分野にまたがる応用について論じ、量子的優位性の可能性を強調した。
論文 参考訳(メタデータ) (2024-08-12T22:53:14Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - Coherent Feed Forward Quantum Neural Network [2.1178416840822027]
量子ニューラルネットワーク(QNN)に焦点をあてた量子機械学習は、いまだに膨大な研究分野である。
適応可能な中間層とノードの観点から,従来のFFNNの汎用性とシームレスに整合するボナフェイドQNNモデルを提案する。
本研究では,診断乳がん(Wisconsin)やクレジットカード不正検出データセットなど,さまざまなベンチマークデータセットを用いて提案モデルを検証した。
論文 参考訳(メタデータ) (2024-02-01T15:13:26Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - On the Interpretability of Quantum Neural Networks [0.0]
人工知能(AI)手法、特にディープニューラルネットワークの解釈可能性は非常に興味深い。
本稿では,古典的ニューラルネットワークによく用いられる局所的モデルに依存しない解釈可能性尺度を用いて,量子ニューラルネットワークの解釈可能性について検討する。
我々の説明の1つの特徴は、データサンプルが本質的にランダムな量子測定の対象であるランダムなラベルを与えられた領域の描写である。
論文 参考訳(メタデータ) (2023-08-22T00:43:14Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - Quantum Self-Attention Neural Networks for Text Classification [8.975913540662441]
量子自己アテンションニューラルネットワーク(QSANN)と呼ばれる,新しいシンプルなネットワークアーキテクチャを提案する。
本稿では,量子ニューラルネットワークに自己アテンション機構を導入し,ガウス射影量子自己アテンションを自己アテンションの有感な量子バージョンとして活用する。
提案手法は低レベル量子雑音に対するロバスト性を示し,量子ニューラルネットワークアーキテクチャに対するレジリエンスを示す。
論文 参考訳(メタデータ) (2022-05-11T16:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。