A Theoretical Understanding of Chain-of-Thought: Coherent Reasoning and Error-Aware Demonstration
- URL: http://arxiv.org/abs/2410.16540v1
- Date: Mon, 21 Oct 2024 22:07:20 GMT
- Title: A Theoretical Understanding of Chain-of-Thought: Coherent Reasoning and Error-Aware Demonstration
- Authors: Yingqian Cui, Pengfei He, Xianfeng Tang, Qi He, Chen Luo, Jiliang Tang, Yue Xing,
- Abstract summary: We show that, compared to Stepwise ICL, the transformer gains better error correction ability and more accurate predictions if the reasoning from earlier steps is integrated.
We propose an improvement on CoT by incorporating both correct and incorrect reasoning paths in the demonstration.
- Score: 41.88275731297211
- License:
- Abstract: Few-shot Chain-of-Thought (CoT) prompting has demonstrated strong performance in improving the reasoning capabilities of large language models (LLMs). While theoretical investigations have been conducted to understand CoT, the underlying transformer used in these studies isolates the CoT reasoning process into separated in-context learning steps (Stepwise ICL). In this work, we theoretically show that, compared to Stepwise ICL, the transformer gains better error correction ability and more accurate predictions if the reasoning from earlier steps (Coherent CoT) is integrated. Given that this coherent reasoning changes the behavior of the transformer, we further investigate the sensitivity of the transformer with Coherent CoT when the demonstration examples are corrupted at the inference stage. Our theoretical results indicate that the transformer is more sensitive to errors in intermediate reasoning steps than the final outcome. Building upon this observation, we propose an improvement on CoT by incorporating both correct and incorrect reasoning paths in the demonstration. Our experiments validate the effectiveness of the proposed approach.
Related papers
- Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
In-context learning allows GPT-style transformers to generalize during inference without modifying their weights.
This paper focuses specifically on their ability to learn and predict affine recurrences as an ICL task.
We analyze the model's internal operations using both empirical and theoretical approaches.
arXiv Detail & Related papers (2024-10-22T21:30:01Z) - Transformers Provably Solve Parity Efficiently with Chain of Thought [40.78854925996]
This work provides the first theoretical analysis of training transformers to solve complex problems.
We consider training a one-layer transformer to solve the fundamental $k$-parity problem.
arXiv Detail & Related papers (2024-10-11T08:55:17Z) - From Sparse Dependence to Sparse Attention: Unveiling How Chain-of-Thought Enhances Transformer Sample Efficiency [17.612497960364916]
Chain-of-thought (CoT) significantly enhances the reasoning performance of large language models (LLM)
We demonstrate that CoT can substantially improve sample efficiency even when representation power is sufficient.
We show that CoT simplifies the learning process by introducing sparse dependencies among input tokens, and leads to a sparse and interpretable attention.
arXiv Detail & Related papers (2024-10-07T19:45:09Z) - Training Nonlinear Transformers for Chain-of-Thought Inference: A Theoretical Generalization Analysis [82.51626700527837]
Chain-of-shift (CoT) is an efficient method that enables the reasoning ability of large language models by augmenting the query using examples with multiple intermediate steps.
We show that despite the theoretical success of CoT, it fails to provide an accurate generalization when CoT does.
arXiv Detail & Related papers (2024-10-03T03:12:51Z) - Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
Chain-of-Thought (CoT) prompting and its variants have gained popularity as effective methods for solving multi-step reasoning problems.
We analyze CoT prompting from a statistical estimation perspective, providing a comprehensive characterization of its sample complexity.
arXiv Detail & Related papers (2024-08-25T04:07:18Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
We propose to strengthen the structural inductive bias of a Transformer by intermediate pre-training.
Our experiments confirm that this helps with few-shot learning of syntactic tasks such as chunking.
Our analysis shows that the intermediate pre-training leads to attention heads that keep track of which syntactic transformation needs to be applied to which token.
arXiv Detail & Related papers (2024-07-05T14:29:44Z) - Iteration Head: A Mechanistic Study of Chain-of-Thought [6.072247578478243]
Chain-of-Thought (CoT) reasoning is known to improve Large Language Models.
This paper shows how CoT reasoning emerges in transformers in a controlled and interpretable setting.
arXiv Detail & Related papers (2024-06-04T09:11:46Z) - TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression [109.69084997173196]
Deepscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood.
Recent works show that this may result in sub-optimal convergence due to the challenges associated with covariance estimation.
We study two questions: (1) Does the predicted covariance truly capture the randomness of the predicted mean?
Our results show that not only does TIC accurately learn the covariance, it additionally facilitates an improved convergence of the negative log-likelihood.
arXiv Detail & Related papers (2023-10-29T09:54:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.