Spatio-temporal Multivariate Cluster Evolution Analysis for Detecting and Tracking Climate Impacts
- URL: http://arxiv.org/abs/2410.16544v1
- Date: Mon, 21 Oct 2024 22:13:09 GMT
- Title: Spatio-temporal Multivariate Cluster Evolution Analysis for Detecting and Tracking Climate Impacts
- Authors: Warren L. Davis IV, Max Carlson, Irina Tezaur, Diana Bull, Kara Peterson, Laura Swiler,
- Abstract summary: This paper presents a novel and efficient unsupervised data-driven approach for detecting statistically-significant impacts.
We demonstrate that the proposed approach is capable of detecting known post-eruption impacts/events.
We additionally describe a methodology for extracting meaningful sequences of post-eruption impacts/events by using NLP.
- Score: 0.0
- License:
- Abstract: Recent years have seen a growing concern about climate change and its impacts. While Earth System Models (ESMs) can be invaluable tools for studying the impacts of climate change, the complex coupling processes encoded in ESMs and the large amounts of data produced by these models, together with the high internal variability of the Earth system, can obscure important source-to-impact relationships. This paper presents a novel and efficient unsupervised data-driven approach for detecting statistically-significant impacts and tracing spatio-temporal source-impact pathways in the climate through a unique combination of ideas from anomaly detection, clustering and Natural Language Processing (NLP). Using as an exemplar the 1991 eruption of Mount Pinatubo in the Philippines, we demonstrate that the proposed approach is capable of detecting known post-eruption impacts/events. We additionally describe a methodology for extracting meaningful sequences of post-eruption impacts/events by using NLP to efficiently mine frequent multivariate cluster evolutions, which can be used to confirm or discover the chain of physical processes between a climate source and its impact(s).
Related papers
- Discovering Latent Structural Causal Models from Spatio-Temporal Data [23.400027588427964]
We present SPACY (SPAtiotemporal Causal discoverY), a novel framework based on variational inference.
We show that SPACY outperforms state-of-the-art baselines on synthetic data, remains scalable for large grids, and identifies key known phenomena from real-world climate data.
arXiv Detail & Related papers (2024-11-08T05:12:16Z) - Random Forest Regression Feature Importance for Climate Impact Pathway Detection [0.0]
We develop a novel technique for discovering and ranking the chain of RF-temporal downstream impacts of a climate source.
We apply our method to ensembles of data generated by running two increasingly complex benchmarks.
We find that our RFR feature importance-based approach can accurately detect known pathways of impact for both test cases.
arXiv Detail & Related papers (2024-09-25T04:18:53Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Cluster-Segregate-Perturb (CSP): A Model-agnostic Explainability Pipeline for Spatiotemporal Land Surface Forecasting Models [5.586191108738564]
This paper introduces a pipeline that integrates principles from both perturbation-based explainability techniques like LIME and global marginal explainability like PDP.
The proposed pipeline simplifies the undertaking of diverse investigative analyses, such as marginal sensitivity analysis, marginal correlation analysis, lag analysis, etc., on complex land surface forecasting models.
arXiv Detail & Related papers (2024-08-12T04:29:54Z) - Harnessing Feature Clustering For Enhanced Anomaly Detection With Variational Autoencoder And Dynamic Threshold [0.0]
We introduce an anomaly detection method to identify critical periods and features influencing extreme climate events like snowmelt in the Arctic.
This method leverages the Variational Autoencoder integrated with dynamic thresholding and correlation-based feature clustering.
This framework enhances the VAE's ability to identify localized dependencies and learn the temporal relationships in climate data.
arXiv Detail & Related papers (2024-07-14T01:52:10Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Characterizing climate pathways using feature importance on echo state
networks [0.0]
echo state network (ESN) is a computationally efficient neural network variation designed for temporal data.
ESNs are non-interpretable black-box models, which poses a hurdle for understanding variable relationships.
We conduct a simulation study to assess and compare the feature importance techniques, and we demonstrate the approach on reanalysis climate data.
arXiv Detail & Related papers (2023-10-12T16:55:04Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.