Harnessing Feature Clustering For Enhanced Anomaly Detection With Variational Autoencoder And Dynamic Threshold
- URL: http://arxiv.org/abs/2407.10042v1
- Date: Sun, 14 Jul 2024 01:52:10 GMT
- Title: Harnessing Feature Clustering For Enhanced Anomaly Detection With Variational Autoencoder And Dynamic Threshold
- Authors: Tolulope Ale, Nicole-Jeanne Schlegel, Vandana P. Janeja,
- Abstract summary: We introduce an anomaly detection method to identify critical periods and features influencing extreme climate events like snowmelt in the Arctic.
This method leverages the Variational Autoencoder integrated with dynamic thresholding and correlation-based feature clustering.
This framework enhances the VAE's ability to identify localized dependencies and learn the temporal relationships in climate data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an anomaly detection method for multivariate time series data with the aim of identifying critical periods and features influencing extreme climate events like snowmelt in the Arctic. This method leverages the Variational Autoencoder (VAE) integrated with dynamic thresholding and correlation-based feature clustering. This framework enhances the VAE's ability to identify localized dependencies and learn the temporal relationships in climate data, thereby improving the detection of anomalies as demonstrated by its higher F1-score on benchmark datasets. The study's main contributions include the development of a robust anomaly detection method, improving feature representation within VAEs through clustering, and creating a dynamic threshold algorithm for localized anomaly detection. This method offers explainability of climate anomalies across different regions.
Related papers
- Spatio-temporal Multivariate Cluster Evolution Analysis for Detecting and Tracking Climate Impacts [0.0]
This paper presents a novel and efficient unsupervised data-driven approach for detecting statistically-significant impacts.
We demonstrate that the proposed approach is capable of detecting known post-eruption impacts/events.
We additionally describe a methodology for extracting meaningful sequences of post-eruption impacts/events by using NLP.
arXiv Detail & Related papers (2024-10-21T22:13:09Z) - Improved Anomaly Detection through Conditional Latent Space VAE Ensembles [49.1574468325115]
Conditional Latent space Variational Autoencoder (CL-VAE) improved pre-processing for anomaly detection on data with known inlier classes and unknown outlier classes.
Model shows increased accuracy in anomaly detection, achieving an AUC of 97.4% on the MNIST dataset.
In addition, the CL-VAE shows increased benefits from ensembling, a more interpretable latent space, and an increased ability to learn patterns in complex data with limited model sizes.
arXiv Detail & Related papers (2024-10-16T07:48:53Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - Hypergraph Learning based Recommender System for Anomaly Detection, Control and Optimization [0.0]
We present a self-adapting anomaly detection framework for joint learning of (a) discrete hypergraph structure and (b) modeling the temporal trends and spatial relations among the interdependent sensors.
The framework exploits the relational inductive biases in the hypergraph-structured data to learn the pointwise single-step-ahead forecasts.
It derives the anomaly information propagation-based computational hypergraphs for root cause analysis and provides recommendations through an offline, optimal predictive control policy.
arXiv Detail & Related papers (2024-08-21T06:04:02Z) - Secure Hierarchical Federated Learning in Vehicular Networks Using Dynamic Client Selection and Anomaly Detection [10.177917426690701]
Hierarchical Federated Learning (HFL) faces the challenge of adversarial or unreliable vehicles in vehicular networks.
Our study introduces a novel framework that integrates dynamic vehicle selection and robust anomaly detection mechanisms.
Our proposed algorithm demonstrates remarkable resilience even under intense attack conditions.
arXiv Detail & Related papers (2024-05-25T18:31:20Z) - Revisiting VAE for Unsupervised Time Series Anomaly Detection: A
Frequency Perspective [40.21603048003118]
Variational Autoencoders (VAEs) have gained popularity in recent decades due to their superior de-noising capabilities.
FCVAE exploits an innovative approach to concurrently integrate both the global and local frequency features into the condition of Conditional Variational Autoencoder (CVAE)
Our approach has been evaluated on public datasets and a large-scale cloud system, and the results demonstrate that it outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-02-05T09:06:57Z) - ADT: Agent-based Dynamic Thresholding for Anomaly Detection [4.356615197661274]
We propose an agent-based dynamic thresholding (ADT) framework based on a deep Q-network.
An auto-encoder is utilized in this study to obtain feature representations and produce anomaly scores for complex input data.
ADT can adjust thresholds adaptively by utilizing the anomaly scores from the auto-encoder.
arXiv Detail & Related papers (2023-12-03T19:07:30Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Multi-Class Anomaly Detection based on Regularized Discriminative
Coupled hypersphere-based Feature Adaptation [85.15324009378344]
This paper introduces a new model by including class discriminative properties obtained by a modified Regularized Discriminative Variational Auto-Encoder (RD-VAE) in the feature extraction process.
The proposed Regularized Discriminative Coupled-hypersphere-based Feature Adaptation (RD-CFA) forms a solution for multi-class anomaly detection.
arXiv Detail & Related papers (2023-11-24T14:26:07Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.