論文の概要: Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise
- arxiv url: http://arxiv.org/abs/2410.16561v3
- Date: Tue, 19 Nov 2024 05:34:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:34:18.886466
- Title: Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise
- Title(参考訳): 重音下での非凸SGDのグラディエント正規化
- Authors: Tao Sun, Xinwang Liu, Kun Yuan,
- Abstract要約: 重み付き雑音下でのグラディエントDescence(SGD)の収束を確実にする上での勾配正規化とクリッピングの役割について検討する。
我々の研究は、重尾雑音下でのSGDの勾配正規化の利点を示す最初の理論的証拠を提供する。
我々は、勾配正規化とクリッピングを取り入れた加速SGD変種を導入し、さらに重み付き雑音下での収束率を高めた。
- 参考スコア(独自算出の注目度): 60.92029979853314
- License:
- Abstract: This paper investigates the roles of gradient normalization and clipping in ensuring the convergence of Stochastic Gradient Descent (SGD) under heavy-tailed noise. While existing approaches consider gradient clipping indispensable for SGD convergence, we theoretically demonstrate that gradient normalization alone without clipping is sufficient to ensure convergence. Furthermore, we establish that combining gradient normalization with clipping offers significantly improved convergence rates compared to using either technique in isolation, notably as gradient noise diminishes. With these results, our work provides the first theoretical evidence demonstrating the benefits of gradient normalization in SGD under heavy-tailed noise. Finally, we introduce an accelerated SGD variant incorporating gradient normalization and clipping, further enhancing convergence rates under heavy-tailed noise.
- Abstract(参考訳): 本稿では,SGD(Stochastic Gradient Descent)の重み付き雑音下での収束を保証するために,勾配正規化とクリッピングが果たす役割について検討する。
既存の手法では、SGD収束に欠かせない勾配クリッピングを考えるが、クリッピングなしでは勾配正規化だけで収束を保証するのに十分であることを理論的に証明する。
さらに、勾配正規化とクリッピングを組み合わせることで、勾配雑音が減少するにつれて、どちらの手法も単独で使用するよりも、収束率が大幅に向上することが確認された。
これらの結果から,重み付き雑音下でのSGDの勾配正規化の利点を示す最初の理論的証拠が得られた。
最後に、勾配正規化とクリッピングを取り入れた高速化されたSGD変種を導入し、重み付き雑音下での収束率をさらに高める。
関連論文リスト
- Convergence Analysis of Adaptive Gradient Methods under Refined Smoothness and Noise Assumptions [18.47705532817026]
AdaGradは特定の条件下では$d$でSGDより優れていることを示す。
これを動機として、目的物の滑らかさ構造と勾配のばらつきを仮定する。
論文 参考訳(メタデータ) (2024-06-07T02:55:57Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
グラディエントDescent(SGD)のための量子クリッピング戦略を導入する。
通常のクリッピングチェーンとして、グラデーション・ニュー・アウトリージを使用します。
本稿では,Huberiles を用いたアルゴリズムの実装を提案する。
論文 参考訳(メタデータ) (2023-09-29T15:24:48Z) - Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms [14.174806471635403]
粒子ダイナミック(IPD)に対するグラディエント・ランゲヴィン・ダイナミクス(SGLD)やランダムバッチ法(RBM)などのサンプリングアルゴリズムの近似を考察する。
近似によって生じる雑音は中央極限定理(CLT)によりほぼガウス的であるが、ブラウン運動はまさにガウス的である。
この構造を利用して拡散過程内の近似誤差を吸収し、これらのアルゴリズムの収束保証を改善する。
論文 参考訳(メタデータ) (2022-06-08T10:17:40Z) - Optimizing Information-theoretical Generalization Bounds via Anisotropic
Noise in SGLD [73.55632827932101]
SGLDにおけるノイズ構造を操作することにより,情報理論の一般化を最適化する。
低経験的リスクを保証するために制約を課すことで、最適なノイズ共分散が期待される勾配共分散の平方根であることを証明する。
論文 参考訳(メタデータ) (2021-10-26T15:02:27Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
そこで本研究では,重み付き分散雑音を用いたスムーズな凸最適化のための,クリップ付きSSTMと呼ばれる新しい1次高速化手法を提案する。
この場合、最先端の結果を上回る新たな複雑さが証明される。
本研究は,SGDにおいて,ノイズに対する光細かな仮定を伴わずにクリッピングを施した最初の非自明な高確率複雑性境界を導出した。
論文 参考訳(メタデータ) (2020-05-21T17:05:27Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。