Bounding the Sample Fluctuation for Pure States Certification with Local Random Measurement
- URL: http://arxiv.org/abs/2410.16635v1
- Date: Tue, 22 Oct 2024 02:26:44 GMT
- Title: Bounding the Sample Fluctuation for Pure States Certification with Local Random Measurement
- Authors: Langxuan Chen, Pengfei Zhang,
- Abstract summary: Recent advancements in randomized measurement techniques have provided fresh insights in this area.
We investigate the fundamental properties of schemes that certify pure quantum states through random local Haar measurements.
Our results unveil the intrinsic interplay between operator complexity and the efficiency of quantum algorithms, serving as an obstacle to local certification of pure states with long-range entanglement.
- Score: 4.923287660970805
- License:
- Abstract: Remarkable breakthroughs in quantum science and technology are demanding for more efficient methods in analyzing quantum many-body states. A significant challenge in this field is to verify whether a quantum state prepared by quantum devices in the lab accurately matches the desired target pure state. Recent advancements in randomized measurement techniques have provided fresh insights in this area. Specifically, protocols such as classical shadow tomography and shadow overlap have been proposed. Building on these developments, we investigate the fundamental properties of schemes that certify pure quantum states through random local Haar measurements. We derive bounds for sample fluctuations that are applicable regardless of the specific estimator construction. These bounds depend on the operator size distribution of either the observable used to estimate fidelity or the valid variation of the reduced density matrix for arbitrary observables. Our results unveil the intrinsic interplay between operator complexity and the efficiency of quantum algorithms, serving as an obstacle to local certification of pure states with long-range entanglement.
Related papers
- Quantum Advantage in Distributed Sensing with Noisy Quantum Networks [37.23288214515363]
We show that quantum advantage in distributed sensing can be achieved with noisy quantum networks.
We show that while entanglement is needed for this quantum advantage, genuine multipartite entanglement is generally unnecessary.
arXiv Detail & Related papers (2024-09-25T16:55:07Z) - Quantum quench dynamics as a shortcut to adiabaticity [31.114245664719455]
We develop and test a quantum algorithm in which the incorporation of a quench step serves as a remedy to the diverging adiabatic timescale.
Our experiments show that this approach significantly outperforms the adiabatic algorithm.
arXiv Detail & Related papers (2024-05-31T17:07:43Z) - Locally purified density operators for noisy quantum circuits [17.38734393793605]
We show that mixed states generated from noisy quantum circuits can be efficiently represented by locally purified density operators (LPDOs)
We present a mapping from LPDOs of $N$ qubits to projected entangled-pair states of size $2times N$ and introduce a unified method for managing virtual and Kraus bonds.
arXiv Detail & Related papers (2023-12-05T16:10:30Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Reliable confidence regions for quantum tomography using distribution moments [0.0]
We suggest a computationally efficient and reliable scheme for determining well-justified error bars for quantum tomography.
We benchmark our approach for a number of quantum tomography protocols using both simulation and demonstration with the use of a cloud-accessible quantum processor.
arXiv Detail & Related papers (2023-07-24T14:21:35Z) - Certifying activation of quantum correlations with finite data [0.0]
Quantum theory allows for different classes of correlations, such as entanglement, steerability or Bell-nonlocality.
We show how our methods can be used to analyse the activation of quantum correlations by local filtering, specifically for Bell-nonlocality and quantum steerability.
arXiv Detail & Related papers (2023-05-05T18:00:00Z) - Demonstration of machine-learning-enhanced Bayesian quantum state
estimation [0.0]
We experimentally realize an approach for defining custom prior distributions that are automatically tuned using machine learning.
We show that ML-defined prior distributions reduce net convergence times and provide a natural way to incorporate both implicit and explicit information directly into the prior distribution.
arXiv Detail & Related papers (2022-12-15T18:41:15Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.