Demonstration of machine-learning-enhanced Bayesian quantum state
estimation
- URL: http://arxiv.org/abs/2212.08032v1
- Date: Thu, 15 Dec 2022 18:41:15 GMT
- Title: Demonstration of machine-learning-enhanced Bayesian quantum state
estimation
- Authors: Sanjaya Lohani, Joseph M. Lukens, Atiyya A. Davis, Amirali Khannejad,
Sangita Regmi, Daniel E. Jones, Ryan T. Glasser, Thomas A. Searles, Brian T.
Kirby
- Abstract summary: We experimentally realize an approach for defining custom prior distributions that are automatically tuned using machine learning.
We show that ML-defined prior distributions reduce net convergence times and provide a natural way to incorporate both implicit and explicit information directly into the prior distribution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) has found broad applicability in quantum information
science in topics as diverse as experimental design, state classification, and
even studies on quantum foundations. Here, we experimentally realize an
approach for defining custom prior distributions that are automatically tuned
using ML for use with Bayesian quantum state estimation methods. Previously,
researchers have looked to Bayesian quantum state tomography due to its unique
advantages like natural uncertainty quantification, the return of reliable
estimates under any measurement condition, and minimal mean-squared error.
However, practical challenges related to long computation times and conceptual
issues concerning how to incorporate prior knowledge most suitably can
overshadow these benefits. Using both simulated and experimental measurement
results, we demonstrate that ML-defined prior distributions reduce net
convergence times and provide a natural way to incorporate both implicit and
explicit information directly into the prior distribution. These results
constitute a promising path toward practical implementations of Bayesian
quantum state tomography.
Related papers
- Bounding the Sample Fluctuation for Pure States Certification with Local Random Measurement [4.923287660970805]
Recent advancements in randomized measurement techniques have provided fresh insights in this area.
We investigate the fundamental properties of schemes that certify pure quantum states through random local Haar measurements.
Our results unveil the intrinsic interplay between operator complexity and the efficiency of quantum algorithms, serving as an obstacle to local certification of pure states with long-range entanglement.
arXiv Detail & Related papers (2024-10-22T02:26:44Z) - Adaptive measurement strategy for quantum subspace methods [0.0]
We propose an adaptive measurement optimization method that is useful for the quantum subspace methods.
The proposed method first determines the measurement protocol for classically simulatable states, and then adaptively updates the protocol of quantum subspace expansion.
As a numerical demonstration, we have shown for excited-state simulation of molecules that we are able to reduce the number of measurements by an order of magnitude.
arXiv Detail & Related papers (2023-11-14T04:00:59Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Efficient preparation of the AKLT State with Measurement-based Imaginary Time Evolution [2.5938976557097715]
We propose a method to prepare the ground state of the Affleck-Lieb-Kennedy-Tasaki model deterministically.
We show that it can be prepared efficiently using the MITE approach.
We show that the procedure is compatible with qubit-based simulators.
arXiv Detail & Related papers (2023-10-09T18:00:03Z) - Reliable confidence regions for quantum tomography using distribution moments [0.0]
We suggest a computationally efficient and reliable scheme for determining well-justified error bars for quantum tomography.
We benchmark our approach for a number of quantum tomography protocols using both simulation and demonstration with the use of a cloud-accessible quantum processor.
arXiv Detail & Related papers (2023-07-24T14:21:35Z) - Transition Role of Entangled Data in Quantum Machine Learning [51.6526011493678]
Entanglement serves as the resource to empower quantum computing.
Recent progress has highlighted its positive impact on learning quantum dynamics.
We establish a quantum no-free-lunch (NFL) theorem for learning quantum dynamics using entangled data.
arXiv Detail & Related papers (2023-06-06T08:06:43Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Efficient quantum state tomography with convolutional neural networks [0.0]
We develop a quantum state tomography scheme which relies on approxing the probability distribution over the outcomes of an informationally complete measurement.
It achieves a reduction of the estimation error of observables by up to an order of magnitude compared to their direct estimation from experimental data.
arXiv Detail & Related papers (2021-09-28T14:55:54Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.