論文の概要: Visual Question Answering in Ophthalmology: A Progressive and Practical Perspective
- arxiv url: http://arxiv.org/abs/2410.16662v1
- Date: Tue, 22 Oct 2024 03:28:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:29:34.646294
- Title: Visual Question Answering in Ophthalmology: A Progressive and Practical Perspective
- Title(参考訳): 眼科における視覚的質問応答 : 進歩的かつ実践的視点
- Authors: Xiaolan Chen, Ruoyu Chen, Pusheng Xu, Weiyi Zhang, Xianwen Shang, Mingguang He, Danli Shi,
- Abstract要約: VQA(Visual Question Answering)は、コンピュータビジョンと自然言語処理を組み合わせて、医療画像に関するクエリを理解し、応答する。
本稿では, 眼科領域におけるVQAの進歩と今後の展望について, 理論的, 実用的両面から考察する。
- 参考スコア(独自算出の注目度): 3.362457692154382
- License:
- Abstract: Accurate diagnosis of ophthalmic diseases relies heavily on the interpretation of multimodal ophthalmic images, a process often time-consuming and expertise-dependent. Visual Question Answering (VQA) presents a potential interdisciplinary solution by merging computer vision and natural language processing to comprehend and respond to queries about medical images. This review article explores the recent advancements and future prospects of VQA in ophthalmology from both theoretical and practical perspectives, aiming to provide eye care professionals with a deeper understanding and tools for leveraging the underlying models. Additionally, we discuss the promising trend of large language models (LLM) in enhancing various components of the VQA framework to adapt to multimodal ophthalmic tasks. Despite the promising outlook, ophthalmic VQA still faces several challenges, including the scarcity of annotated multimodal image datasets, the necessity of comprehensive and unified evaluation methods, and the obstacles to achieving effective real-world applications. This article highlights these challenges and clarifies future directions for advancing ophthalmic VQA with LLMs. The development of LLM-based ophthalmic VQA systems calls for collaborative efforts between medical professionals and AI experts to overcome existing obstacles and advance the diagnosis and care of eye diseases.
- Abstract(参考訳): 眼科疾患の正確な診断は、しばしば時間と専門性に依存したプロセスであるマルチモーダル眼科画像の解釈に大きく依存している。
VQA(Visual Question Answering)は、コンピュータビジョンと自然言語処理を融合して、医療画像に関するクエリを理解し、応答することで、潜在的な学際的ソリューションを提供する。
本稿では,眼科学におけるVQAの最近の進歩と将来展望を理論的・実践的両面から考察し,眼科医に基礎となるモデルを活用するための深い理解とツールを提供することを目的とする。
さらに,VQAフレームワークの様々なコンポーネントを拡張し,マルチモーダル眼科作業に適応する上で,大規模言語モデル(LLM)が期待できる傾向について論じる。
有望な展望にもかかわらず、眼VQAは、注釈付きマルチモーダル画像データセットの不足、包括的かつ統一的な評価方法の必要性、効果的な現実世界のアプリケーションを実現するための障害など、いくつかの課題に直面している。
本稿では, これらの課題を取り上げ, LLMによる眼内VQAの進展に向けた今後の方向性を明らかにする。
LLMベースの眼科VQAシステムの開発では、既存の障害を克服し、眼疾患の診断と治療を進めるために、医療専門家とAI専門家の協力的努力が求められている。
関連論文リスト
- LMOD: A Large Multimodal Ophthalmology Dataset and Benchmark for Large Vision-Language Models [38.78576472811659]
大規模視覚言語モデル(LVLM)は、解剖情報を理解し、眼疾患を診断し、解釈と追跡計画の作成を支援する可能性がある。
我々は、クローズドソース、オープンソース、医療ドメインの13の最先端のLVLM代表をベンチマークした。
その結果,眼科領域では他の領域と比較してLVLMが有意に低下した。
論文 参考訳(メタデータ) (2024-10-02T14:57:58Z) - ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
MVKLは,マルチビュー画像,詳細な表示,報告を含む最初のマルチモーダルマンモグラフィーデータセットである。
このデータセットに基づいて、教師なし事前学習のチャラリングタスクに焦点を当てる。
視覚,知識,言語機能を相乗化するフレームワークであるViKLを提案する。
論文 参考訳(メタデータ) (2024-09-24T05:01:23Z) - EyeCLIP: A visual-language foundation model for multi-modal ophthalmic image analysis [20.318178211934985]
本研究では,277万点以上の眼科画像と部分テキストデータを用いた視覚言語基盤モデルであるEyeCLIPを提案する。
EyeCLIPは、眼疾患や全身疾患を含む幅広い下流のタスクに移行することができる。
論文 参考訳(メタデータ) (2024-09-10T17:00:19Z) - Automated Retinal Image Analysis and Medical Report Generation through Deep Learning [3.4447129363520337]
網膜疾患の増加は、医療システムにとって大きな課題となっている。
網膜画像から医療報告を生成する従来の方法は、手動による解釈に依存している。
この論文は、網膜画像の医療レポート生成を自動化する人工知能の可能性について考察する。
論文 参考訳(メタデータ) (2024-08-14T07:47:25Z) - VisionUnite: A Vision-Language Foundation Model for Ophthalmology Enhanced with Clinical Knowledge [26.93106207758859]
臨床知識によって強化された眼科の新しい視覚言語基盤モデルであるVisionUniteを紹介する。
VisionUniteは、124万の画像テキストペアからなる広範囲なデータセットで事前訓練されている。
実験の結果,VisionUnite は GPT-4V や Gemini Pro などの既存の生成基盤モデルよりも優れていた。
論文 参考訳(メタデータ) (2024-08-05T23:31:07Z) - EyeFound: A Multimodal Generalist Foundation Model for Ophthalmic Imaging [13.88319807760491]
眼科画像のマルチモーダル基盤モデルであるEyeFoundを提案する。
ラベルのないマルチモーダル網膜画像から一般化可能な表現を学習する。
11の眼科領域にわたる227の病院の278万枚の画像で訓練されている。
論文 参考訳(メタデータ) (2024-05-18T17:03:39Z) - SkinGEN: an Explainable Dermatology Diagnosis-to-Generation Framework with Interactive Vision-Language Models [52.90397538472582]
SkinGENは、VLMが提供する診断結果から参照デモを生成する、診断から生成までのフレームワークである。
システム性能と説明可能性の両方を評価するために,32人の参加者によるユーザスタディを実施している。
その結果、SkinGENはVLM予測に対するユーザの理解を著しく改善し、診断プロセスへの信頼を高めることが示されている。
論文 参考訳(メタデータ) (2024-04-23T05:36:33Z) - A Comprehensive Evaluation of GPT-4V on Knowledge-Intensive Visual Question Answering [53.70661720114377]
マルチモーダル・大型モデル(MLM)は視覚的理解の分野を著しく進歩させ、視覚的質問応答(VQA)の領域で顕著な能力を提供している
しかし、真の課題は知識集約型VQAタスクの領域にある。
1) モデルが視覚的手がかりを理解し、一般的な知識にどのように結びつくかを評価するコモンセンス知識、2) 画像から特定の知識を推論し、提示する際のモデルのスキルをテストする微粒な世界知識。
論文 参考訳(メタデータ) (2023-11-13T18:22:32Z) - Artificial General Intelligence for Medical Imaging Analysis [92.3940918983821]
大規模人工知能(AGI)モデルは、様々な汎用ドメインタスクにおいて前例のない成功を収めた。
これらのモデルは、医学分野固有の複雑さとユニークな特徴から生じる顕著な課題に直面している。
このレビューは、医療画像、医療などにおけるAGIの将来的な意味についての洞察を提供することを目的としている。
論文 参考訳(メタデータ) (2023-06-08T18:04:13Z) - ChatCAD: Interactive Computer-Aided Diagnosis on Medical Image using
Large Language Models [53.73049253535025]
大規模言語モデル(LLM)は、最近臨床応用においてその可能性を実証している。
本稿では,LLMを医療画像CADネットワークに統合する手法を提案する。
LLMの医用領域知識と論理的推論の強みを、既存の医用画像CADモデルの視覚理解能力と融合させることが目的である。
論文 参考訳(メタデータ) (2023-02-14T18:54:06Z) - Align, Reason and Learn: Enhancing Medical Vision-and-Language
Pre-training with Knowledge [68.90835997085557]
本稿では,3つの視点から構造化された医療知識を高めるための体系的かつ効果的なアプローチを提案する。
まず、視覚エンコーダと言語エンコーダの表現を知識を通して整列する。
次に,多モード融合モデルに知識を注入し,入力画像とテキストの補足として知識を用いた推論を可能にする。
第3に、知識によって引き起こされるプレテキストタスクを設計することで、画像やテキストの最も重要な情報に重点を置くよう、モデルを指導する。
論文 参考訳(メタデータ) (2022-09-15T08:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。