Near-coherent quantum emitters in hexagonal boron nitride with discrete polarization axes
- URL: http://arxiv.org/abs/2402.11786v2
- Date: Fri, 24 May 2024 06:42:53 GMT
- Title: Near-coherent quantum emitters in hexagonal boron nitride with discrete polarization axes
- Authors: Jake Horder, Dominic Scognamiglio, Ádám Ganyecz, Viktor Ivády, Mehran Kianinia, Milos Toth, Igor Aharonovich,
- Abstract summary: Hexagonal boron nitride (hBN) has recently gained attention as a solid state host of quantum emitters.
Here we employ spectral hole burning spectroscopy and resonant polarization measurements to observe nearly-coherent hBN quantum emitters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hexagonal boron nitride (hBN) has recently gained attention as a solid state host of quantum emitters. However, hBN emitters reported to date lack the properties needed for their deployment in scalable quantum technologies. Here we employ spectral hole burning spectroscopy and resonant polarization measurements to observe nearly-coherent hBN quantum emitters, both as singles and in ensembles, with three discrete polarization axes indicative of a C2v symmetry defect. Our results constitute an important milestone towards the implementation of hBN quantum emitters in integrated quantum photonics.
Related papers
- Decoherence of Quantum Emitters in hexagonal Boron Nitride [0.17413461132662073]
Coherent quantum emitters are a central resource for advanced quantum technologies.
Here, we demonstrate that hBN processes can degrade the coherence, and hence the functionality, of quantum emitters in hBN.
We highlight the critical importance of crystal lattice quality to achieving coherent quantum emitters in hBN.
arXiv Detail & Related papers (2024-10-22T04:25:35Z) - Deterministic Creation of Identical Monochromatic Quantum Emitters in Hexagonal Boron Nitride [0.856679809939242]
The authors report a deterministic creation of identical room temperature quantum emitters using masked-carbon-ion implantation on freestanding hBN flakes.
Quantum emitters fabricated by our approach showed thermally limited monochromaticity with an emission center wavelength distribution of 590.7 +- 2.7 nm.
Our method provides a reliable platform for characterization and fabrication research on hBN based quantum emitters, helping to reveal the origins of the single-photon-emission behavior in hBN.
arXiv Detail & Related papers (2024-10-17T02:52:01Z) - Quantum Emission from Coupled Spin Pairs in Hexagonal Boron Nitride [4.1020458874018795]
Optically addressable defect qubits in wide band gap materials are favorable candidates for room temperature quantum information processing.
The two-dimensional hexagonal boron nitride (hBN) is an attractive solid state platform with a great potential for hosting bright quantum emitters with quantum memories.
arXiv Detail & Related papers (2024-08-24T08:40:38Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Photoneutralization of charges in GaAs quantum dot based entangled
photon emitters [0.923921787880063]
We show that emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
Our finding demonstrates that the emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
arXiv Detail & Related papers (2021-10-05T20:25:52Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Mechanical Decoupling of Quantum Emitters in Hexagonal Boron Nitride
from Low-Energy Phonon Modes [52.77024349608834]
Quantum emitters in hexagonal Boron Nitride (hBN) were recently reported to hol a homogeneous linewidth according to the Fourier-Transform limit up to room temperature.
This unusual observation was traced back to decoupling from in-plane phonon modes which can arise if the emitter is located between two planes of the hBN host material.
arXiv Detail & Related papers (2020-04-22T20:00:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.