Disorder-Engineered Hybrid Plasmonic Cavities for Emission Control of Defects in hBN
- URL: http://arxiv.org/abs/2506.14517v1
- Date: Tue, 17 Jun 2025 13:46:15 GMT
- Title: Disorder-Engineered Hybrid Plasmonic Cavities for Emission Control of Defects in hBN
- Authors: Sinan Genc, Oguzhan Yucel, Furkan Aglarci, Carlos Rodriguez-Fernandez, Alpay Yilmaz, Humeyra Caglayan, Serkan Ates, Alpan Bek,
- Abstract summary: Defect-based quantum emitters in hexagonal boron nitride (hBN) are promising building blocks for scalable quantum photonics.<n>This study demonstrates a low-cost, fabrication approach to integrate plasmonic nanocavities with defect-based quantum emitters in hBN nanoflakes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Defect-based quantum emitters in hexagonal boron nitride (hBN) are promising building blocks for scalable quantum photonics due to their stable single-photon emission at room temperature. However, enhancing their emission intensity and controlling the decay dynamics remain significant challenges. This study demonstrates a low-cost, scalable fabrication approach to integrate plasmonic nanocavities with defect-based quantum emitters in hBN nanoflakes. Using the thermal dewetting process, we realize two distinct configurations: stochastic Ag nanoparticles (AgNPs) on hBN flakes and hybrid plasmonic nanocavities formed by AgNPs on top of hBN flakes supported on gold/silicon dioxide (Au/SiO2) substrates. While AgNPs on bare hBN yield up to a two-fold photoluminescence (PL) enhancement with reduced emitter lifetimes, the hybrid nanocavity architecture provides a dramatic, up to 100-fold PL enhancement and improved uniformity across multiple. emitters, all without requiring deterministic positioning. Finite-difference time-domain (FDTD) simulations and time-resolved PL measurements confirm size-dependent control over decay dynamics and cavity-emitter interactions. Our versatile solution overcomes key quantum photonic device development challenges, including material integration, emission intensity optimization, and spectral multiplexity. Future work will explore potential applications in integrated photonic circuits hosting on-chip quantum systems and hBN-based label-free single-molecule detection through such quantum nanoantennas.
Related papers
- Generation of photon pairs through spontaneous four-wave mixing in subwavelength nonlinear films [67.410870290301]
We investigate photon pair generation through spontaneous four-wave mixing (SFWM) in subwavelength films of amorphous silicon nitride (SiN) with varying nitrogen content.<n>By observing two-photon interference between SFWM from the SiN films and the fused silica substrate, we find the third-order susceptibilities of films with different nitrogen content.
arXiv Detail & Related papers (2025-02-03T12:30:06Z) - Decoherence of Quantum Emitters in hexagonal Boron Nitride [0.17413461132662073]
Coherent quantum emitters are a central resource for advanced quantum technologies.
Here, we demonstrate that hBN processes can degrade the coherence, and hence the functionality, of quantum emitters in hBN.
We highlight the critical importance of crystal lattice quality to achieving coherent quantum emitters in hBN.
arXiv Detail & Related papers (2024-10-22T04:25:35Z) - Quantum Emission from Coupled Spin Pairs in Hexagonal Boron Nitride [4.1020458874018795]
Optically addressable defect qubits in wide band gap materials are favorable candidates for room temperature quantum information processing.
The two-dimensional hexagonal boron nitride (hBN) is an attractive solid state platform with a great potential for hosting bright quantum emitters with quantum memories.
arXiv Detail & Related papers (2024-08-24T08:40:38Z) - Plasmonic Nanocavity to Boost Single Photon Emission from Defects in Thin Hexagonal Boron Nitride [0.0]
Single photon emitters based on nanoscale solid-state materials meet the fast emission rate and strong brightness demands.
The presented hybrid nanophotonic structure creates a rapid speedup and large enhancement in single photon emission at room temperature.
The proposed quantum nanocavity single photon source is expected to be an element of paramount importance to the envisioned room-temperature integrated quantum photonic networks.
arXiv Detail & Related papers (2024-05-15T19:54:32Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Plasmon Enhanced Quantum Properties of Single Photon Emitters with
Hybrid Hexagonal Boron Nitride Silver Nanocube Systems [0.0]
Hexagonal boron nitride (hBN) has emerged as a promising ultrathin host of single photon emitters (SPEs)
We study the quantum single photon properties of hybrid nanophotonic structures composed of SPEs created in ultrathin hBN flakes and plasmonic silver nanocubes.
arXiv Detail & Related papers (2023-04-01T13:52:16Z) - Properties of quantum emitters in different hBN sample types particularly suited for nanophotonic integration [4.021084822231413]
Single photon emitters in hexagonal boron nitride (hBN) are promising solid-state quantum emitters for photonic applications and quantum networks.<n>We focus on two different kinds of hBN samples that particularly lend themselves for integration with nanophotonic devices.<n>We compare and elucidate the properties in different sample types particularly suited for photonic quantum networks and narrow down the origin of emitters found in these samples.
arXiv Detail & Related papers (2022-10-20T08:51:03Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.