論文の概要: Development of CNN Architectures using Transfer Learning Methods for Medical Image Classification
- arxiv url: http://arxiv.org/abs/2410.16711v1
- Date: Tue, 22 Oct 2024 05:37:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:30:10.027138
- Title: Development of CNN Architectures using Transfer Learning Methods for Medical Image Classification
- Title(参考訳): 医用画像分類のための伝達学習手法を用いたCNNアーキテクチャの開発
- Authors: Ganga Prasad Basyal, David Zeng, Bhaskar Pm Rimal,
- Abstract要約: 本稿では,医療画像分類分野における伝達学習技術を用いたCNNアーキテクチャの開発について検討する。
本研究は,CNNアーキテクチャを最適かつ最新に選択した上で,その決定を下すのに役立つ。
- 参考スコア(独自算出の注目度): 0.294944680995069
- License:
- Abstract: The application of deep learning-based architecture has seen a tremendous rise in recent years. For example, medical image classification using deep learning achieved breakthrough results. Convolutional Neural Networks (CNNs) are implemented predominantly in medical image classification and segmentation. On the other hand, transfer learning has emerged as a prominent supporting tool for enhancing the efficiency and accuracy of deep learning models. This paper investigates the development of CNN architectures using transfer learning techniques in the field of medical image classification using a timeline mapping model for key image classification challenges. Our findings help make an informed decision while selecting the optimum and state-of-the-art CNN architectures.
- Abstract(参考訳): ディープラーニングベースのアーキテクチャの応用は、ここ数年で飛躍的な増加を見せている。
例えば、深層学習を用いた医用画像分類は画期的な結果を得た。
畳み込みニューラルネットワーク(CNN)は、主に医療画像の分類とセグメンテーションに実装されている。
一方, 伝達学習は, 深層学習モデルの効率性と精度を高めるための重要な支援ツールとして出現している。
本稿では,重要な画像分類問題に対するタイムラインマッピングモデルを用いて,医療画像分類分野における伝達学習技術を用いたCNNアーキテクチャの開発について検討する。
本研究は,CNNアーキテクチャを最適かつ最新に選択した上で,その決定を下すのに役立つ。
関連論文リスト
- Enhanced Convolutional Neural Networks for Improved Image Classification [0.40964539027092917]
CIFAR-10は、小規模のマルチクラスデータセットの分類モデルの性能を評価するために広く使用されているベンチマークである。
本稿では,より深い畳み込みブロック,バッチ正規化,ドロップアウト正規化を統合したCNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-02-02T04:32:25Z) - Improving Sickle Cell Disease Classification: A Fusion of Conventional Classifiers, Segmented Images, and Convolutional Neural Networks [0.31457219084519006]
本稿では, 従来の分類器, セグメント化画像, CNNを併用して, 病原細胞疾患の自動分類を行う手法を提案する。
以上の結果から,SVMを用いたセグメント画像とCNN機能を用いることで96.80%の精度が得られた。
論文 参考訳(メタデータ) (2024-12-23T20:42:15Z) - Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
本稿では,種々の医用画像データセット間での伝達学習を伴う,事前訓練された深部畳み込みニューラルネットワークの使用の複雑さについて検討する。
固定特徴抽出器として事前訓練されたモデルを使用することで,データセットに関係なく性能が低下することを示す。
また、より深く複雑なアーキテクチャが必ずしも最高のパフォーマンスをもたらすとは限らないことも判明した。
論文 参考訳(メタデータ) (2024-08-30T04:51:19Z) - Transformer-CNN Fused Architecture for Enhanced Skin Lesion Segmentation [0.0]
畳み込みニューラルネットワーク(CNN)は、非常に高度な医療画像セグメンテーションを持つ。
CNNは、長距離依存関係の学習とグローバルコンテキストの取得に苦労している。
我々は、トランスフォーマーがグローバルな依存関係をキャプチャする能力と、CNNが低レベル空間の詳細をキャプチャする能力を組み合わせたハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-10T18:36:14Z) - Medical Image Analysis using Deep Relational Learning [1.8465474345655504]
医用画像セグメンテーションを行うために,特徴間の暗黙的関係情報を効果的にモデル化するコンテキスト対応完全畳み込みネットワークを提案する。
そこで我々は,隣接するフレーム間の空間的関係を学習し,正確な医用画像モザイクを実現するために,新しい階層的ホモグラフィー推定ネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T16:10:12Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
本研究では,金属インプラントとの接触部における骨成長の計算アルゴリズムを開発した。
骨とインプラント組織はトレーニングデータセットに手動でセグメンテーションされた。
ネットワーク精度の面では、モデルは約98%に達した。
論文 参考訳(メタデータ) (2022-04-22T08:17:20Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。