論文の概要: SHANGUS: Deep Reinforcement Learning Meets Heuristic Optimization for Speedy Frontier-Based Exploration of Autonomous Vehicles in Unknown Spaces
- arxiv url: http://arxiv.org/abs/2407.18892v1
- Date: Fri, 26 Jul 2024 17:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 12:39:55.428300
- Title: SHANGUS: Deep Reinforcement Learning Meets Heuristic Optimization for Speedy Frontier-Based Exploration of Autonomous Vehicles in Unknown Spaces
- Title(参考訳): SHANGUS: 未知の空間における高速フロンティアに基づく自律走行車探索のためのヒューリスティックな最適化を実現する深層強化学習
- Authors: Seunghyeop Nam, Tuan Anh Nguyen, Eunmi Choi, Dugki Min,
- Abstract要約: SHANGUSは、Deep Reinforcement Learning(DRL)と最適化を組み合わせたフレームワークで、フロンティアベースの探索効率を改善する。
このフレームワークは、産業自動化、自律運転、家庭用ロボット工学、宇宙探査などの分野におけるリアルタイムの自律ナビゲーションに適している。
- 参考スコア(独自算出の注目度): 1.8749305679160366
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces SHANGUS, an advanced framework combining Deep Reinforcement Learning (DRL) with heuristic optimization to improve frontier-based exploration efficiency in unknown environments, particularly for intelligent vehicles in autonomous air services, search and rescue operations, and space exploration robotics. SHANGUS harnesses DRL's adaptability and heuristic prioritization, markedly enhancing exploration efficiency, reducing completion time, and minimizing travel distance. The strategy involves a frontier selection node to identify unexplored areas and a DRL navigation node using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm for robust path planning and dynamic obstacle avoidance. Extensive experiments in ROS2 and Gazebo simulation environments show SHANGUS surpasses representative traditional methods like the Nearest Frontier (NF), Novel Frontier-Based Exploration Algorithm (CFE), and Goal-Driven Autonomous Exploration (GDAE) algorithms, especially in complex scenarios, excelling in completion time, travel distance, and exploration rate. This scalable solution is suitable for real-time autonomous navigation in fields such as industrial automation, autonomous driving, household robotics, and space exploration. Future research will integrate additional sensory inputs and refine heuristic functions to further boost SHANGUS's efficiency and robustness.
- Abstract(参考訳): 本稿では,深層強化学習(DRL)とヒューリスティック最適化を組み合わせた高度フレームワークであるSHANGUSを紹介する。
シャングスはDRLの適応性とヒューリスティックな優先順位付けを活用し、探索効率を著しく向上し、完了時間を短縮し、旅行距離を最小化している。
この戦略は、探索されていない領域を識別するフロンティア選択ノードと、ロバストパス計画と動的障害物回避のためのTwin Delayed Deep Deterministic Policy Gradient (TD3)アルゴリズムを用いたDRLナビゲーションノードを含む。
ROS2 と Gazebo のシミュレーション環境での大規模な実験は、SHANGUS がNF (Nearest Frontier) や New Frontier-Based Exploration Algorithm (CFE) や Goal-Driven Self Exploration (GDAE) アルゴリズムなど、特に複雑なシナリオにおいて、特に完了時間、旅行距離、探索速度などにおいて、代表的手法を超越していることを示している。
このスケーラブルなソリューションは、産業自動化、自律運転、家庭用ロボティクス、宇宙探査といった分野におけるリアルタイムの自律ナビゲーションに適している。
将来の研究は、SHANGUSの効率性と堅牢性をさらに向上するために、追加の感覚入力とヒューリスティック機能を統合する予定である。
関連論文リスト
- Deep-Sea A*+: An Advanced Path Planning Method Integrating Enhanced A* and Dynamic Window Approach for Autonomous Underwater Vehicles [1.3807821497779342]
深海環境における極度の環境は、水中での作戦に重大な課題をもたらす。
改良されたA*アルゴリズムと動的ウィンドウアプローチ(DWA)を統合した高度な経路計画手法を提案する。
提案手法は,経路の滑らかさ,障害物回避,リアルタイム性能の観点から,従来のA*アルゴリズムを超越した手法である。
論文 参考訳(メタデータ) (2024-10-22T07:29:05Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - From Simulations to Reality: Enhancing Multi-Robot Exploration for Urban
Search and Rescue [46.377510400989536]
本研究では,コミュニケーションが限られ,位置情報がない未知の環境での効率的なマルチロボット探索のための新しいハイブリッドアルゴリズムを提案する。
連続した目標情報なしでシナリオに合うように、ローカルなベストとグローバルなベストポジションを再定義する。
提示された研究は、限られた情報と通信能力を持つシナリオにおけるマルチロボット探索の強化を約束している。
論文 参考訳(メタデータ) (2023-11-28T17:05:25Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Reinforcement Learning with Frontier-Based Exploration via Autonomous
Environment [0.0]
この研究は、ExploreORBとして知られる既存のVisual-Graph SLAMと強化学習を組み合わせたものである。
提案アルゴリズムは、フロンティアの探索プロセスを最適化し、より正確な地図を作成することにより、ExploreORBの効率と精度を向上させることを目的としている。
論文 参考訳(メタデータ) (2023-07-14T12:19:46Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Rule-Based Reinforcement Learning for Efficient Robot Navigation with
Space Reduction [8.279526727422288]
本稿では,強化学習(RL)技術を用いた効率的なナビゲーションに焦点を当てた。
軌道を縮小するために減速ルールを採用し、冗長な探査空間を効果的に削減します。
ヘックスグリッド環境における実際のロボットナビゲーション問題に対する実験は、RuRLが航法性能を向上させることを実証している。
論文 参考訳(メタデータ) (2021-04-15T07:40:27Z) - Sparse Reward Exploration via Novelty Search and Emitters [55.41644538483948]
本稿では,SparsE Reward Exploration via Novelty and Emitters (SERENE)アルゴリズムを提案する。
SERENEは、探索空間の探索と報酬の搾取を2つの交互プロセスに分けている。
メタスケジューラは、2つのプロセス間の交互にグローバルな計算予算を割り当てる。
論文 参考訳(メタデータ) (2021-02-05T12:34:54Z) - Autonomous UAV Exploration of Dynamic Environments via Incremental
Sampling and Probabilistic Roadmap [0.3867363075280543]
インクリメンタルサンプリングと確率的ロードマップ(PRM)を用いた未知環境探索のための新しい動的探索プランナ(DEP)を提案する。
本手法は, 動的環境を安全に探索し, 探索時間, 経路長, 計算時間でベンチマークプランナーより優れている。
論文 参考訳(メタデータ) (2020-10-14T22:52:37Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
論文 参考訳(メタデータ) (2020-08-21T03:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。