Correct after Answer: Enhancing Multi-Span Question Answering with Post-Processing Method
- URL: http://arxiv.org/abs/2410.16788v1
- Date: Tue, 22 Oct 2024 08:04:32 GMT
- Title: Correct after Answer: Enhancing Multi-Span Question Answering with Post-Processing Method
- Authors: Jiayi Lin, Chenyang Zhang, Haibo Tong, Dongyu Zhang, Qingqing Hong, Bingxuan Hou, Junli Wang,
- Abstract summary: Multi-Span Question Answering (MSQA) requires models to extract one or multiple answer spans from a given context to answer a question.
We propose Answering-Classifying-Correcting (ACC) framework, which employs a post-processing strategy to handle incorrect predictions.
- Score: 11.794628063040108
- License:
- Abstract: Multi-Span Question Answering (MSQA) requires models to extract one or multiple answer spans from a given context to answer a question. Prior work mainly focuses on designing specific methods or applying heuristic strategies to encourage models to predict more correct predictions. However, these models are trained on gold answers and fail to consider the incorrect predictions. Through a statistical analysis, we observe that models with stronger abilities do not predict less incorrect predictions compared with other models. In this work, we propose Answering-Classifying-Correcting (ACC) framework, which employs a post-processing strategy to handle incorrect predictions. Specifically, the ACC framework first introduces a classifier to classify the predictions into three types and exclude "wrong predictions", then introduces a corrector to modify "partially correct predictions". Experiments on several MSQA datasets show that ACC framework significantly improves the Exact Match (EM) scores, and further analysis demostrates that ACC framework efficiently reduces the number of incorrect predictions, improving the quality of predictions.
Related papers
- Towards Human-AI Complementarity with Predictions Sets [14.071862670474832]
Decision support systems based on prediction sets have proven to be effective at helping human experts solve classification tasks.
We show that the prediction sets constructed using conformal prediction are, in general, suboptimal in terms of average accuracy.
We introduce a greedy algorithm that, for a large class of expert models and non-optimal scores, is guaranteed to find prediction sets that provably offer equal or greater performance.
arXiv Detail & Related papers (2024-05-27T18:00:00Z) - Conformalized Late Fusion Multi-View Learning [18.928543069018865]
Uncertainty quantification for multi-view learning is motivated by the increasing use of multi-view data in scientific problems.
A common variant of multi-view learning is late fusion: train separate predictors on individual views and combine them after single-view predictions are available.
We propose a novel methodology, Multi-View Conformal Prediction (MVCP), where conformal prediction is instead performed separately on the single-view predictors and only fused subsequently.
arXiv Detail & Related papers (2024-05-25T14:11:01Z) - Awareness of uncertainty in classification using a multivariate model and multi-views [1.3048920509133808]
The proposed model regularizes uncertain predictions, and trains to calculate both the predictions and their uncertainty estimations.
Given the multi-view predictions together with their uncertainties and confidences, we proposed several methods to calculate final predictions.
The proposed methodology was tested using CIFAR-10 dataset with clean and noisy labels.
arXiv Detail & Related papers (2024-04-16T06:40:51Z) - Conformal online model aggregation [29.43493007296859]
This paper proposes a new approach towards conformal model aggregation in online settings.
It is based on combining the prediction sets from several algorithms by voting, where weights on the models are adapted over time based on past performance.
arXiv Detail & Related papers (2024-03-22T15:40:06Z) - VisFIS: Visual Feature Importance Supervision with
Right-for-the-Right-Reason Objectives [84.48039784446166]
We show that model FI supervision can meaningfully improve VQA model accuracy as well as performance on several Right-for-the-Right-Reason metrics.
Our best performing method, Visual Feature Importance Supervision (VisFIS), outperforms strong baselines on benchmark VQA datasets.
Predictions are more accurate when explanations are plausible and faithful, and not when they are plausible but not faithful.
arXiv Detail & Related papers (2022-06-22T17:02:01Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
We show that pre-trained language models with few examples show strong prediction bias across labels.
Although few-shot fine-tuning can mitigate the prediction bias, our analysis shows models gain performance improvement by capturing non-task-related features.
These observations alert that pursuing model performance with fewer examples may incur pathological prediction behavior.
arXiv Detail & Related papers (2022-04-17T15:55:18Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - Backward-Compatible Prediction Updates: A Probabilistic Approach [12.049279991559091]
We formalize the Prediction Update Problem and present an efficient probabilistic approach as answer to the above questions.
In extensive experiments on standard classification benchmark data sets, we show that our method outperforms alternative strategies for backward-compatible prediction updates.
arXiv Detail & Related papers (2021-07-02T13:05:31Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
This paper proposes an AutoML framework called Automatic Machine Learning for Conformal Prediction (AutoCP)
Unlike the familiar AutoML frameworks that attempt to select the best prediction model, AutoCP constructs prediction intervals that achieve the user-specified target coverage rate.
We tested AutoCP on a variety of datasets and found that it significantly outperforms benchmark algorithms.
arXiv Detail & Related papers (2020-06-24T23:13:11Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.