論文の概要: Scene-Aware Explainable Multimodal Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2410.16795v2
- Date: Mon, 10 Mar 2025 01:33:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:42:11.051966
- Title: Scene-Aware Explainable Multimodal Trajectory Prediction
- Title(参考訳): 説明可能なマルチモーダル軌道予測のシーンアウェア化
- Authors: Pei Liu, Haipeng Liu, Xingyu Liu, Yiqun Li, Junlan Chen, Yangfan He, Jun Ma,
- Abstract要約: 説明可能な条件拡散に基づくマルチモーダル軌道予測(DMTP)モデルを提案する。
本モデルでは,マルチモーダルな軌道パターンを捉えるために条件拡散法を改良し,大域的特徴とシナリオ固有の特徴の意義を評価するためにシェープ値モデルを改良した。
実験により,本モデルが重要な入力の同定に優れ,精度でベースラインモデルよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 15.58042746234974
- License:
- Abstract: Advancements in intelligent technologies have significantly improved navigation in complex traffic environments by enhancing environment perception and trajectory prediction for automated vehicles. However, current research often overlooks the joint reasoning of scenario agents and lacks explainability in trajectory prediction models, limiting their practical use in real-world situations. To address this, we introduce the Explainable Conditional Diffusion-based Multimodal Trajectory Prediction (DMTP) model, which is designed to elucidate the environmental factors influencing predictions and reveal the underlying mechanisms. Our model integrates a modified conditional diffusion approach to capture multimodal trajectory patterns and employs a revised Shapley Value model to assess the significance of global and scenario-specific features. Experiments using the Waymo Open Motion Dataset demonstrate that our explainable model excels in identifying critical inputs and significantly outperforms baseline models in accuracy. Moreover, the factors identified align with the human driving experience, underscoring the model's effectiveness in learning accurate predictions. Code is available in our open-source repository: https://github.com/ocean-luna/Explainable-Prediction.
- Abstract(参考訳): インテリジェントな技術の進歩は、自動車の環境認識と軌道予測を強化することで、複雑な交通環境におけるナビゲーションを著しく改善した。
しかし、近年の研究はシナリオエージェントの合理化をしばしば見落とし、軌道予測モデルに説明可能性がなく、現実の状況での使用を制限している。
そこで本研究では,環境要因が予測に与える影響を解明し,その基盤となるメカニズムを明らかにするための,説明可能な条件拡散に基づくマルチモーダル軌道予測(DMTP)モデルを提案する。
本モデルでは,マルチモーダルな軌道パターンを捉えるために条件拡散法を改良し,大域的特徴とシナリオ固有の特徴の意義を評価するためにシェープ値モデルを改良した。
Waymo Open Motion Datasetを用いた実験により、我々の説明可能なモデルは重要な入力を識別し、ベースラインモデルの精度を大幅に向上することを示した。
さらに、識別された要因は人間の運転経験と一致し、正確な予測を学習する際のモデルの有効性を裏付ける。
コードは当社のオープンソースリポジトリで利用可能です。
関連論文リスト
- TrajDiffuse: A Conditional Diffusion Model for Environment-Aware Trajectory Prediction [16.188078087197106]
本稿では,新しい条件付き拡散モデルを用いた計画に基づく軌道予測手法であるTrajDiffuseを提案する。
本研究では, 軌道予測問題を不特定課題として定式化し, 拡散過程の地図に基づくガイダンス項を設計する。
TrajDiffuseは、環境制約にほぼ完全に準拠しながら、SOTAの正確さと多様性を一致または超過する軌道予測を生成することができる。
論文 参考訳(メタデータ) (2024-10-14T17:59:03Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Diffusion-Based Environment-Aware Trajectory Prediction [3.1406146587437904]
自動運転車の安全かつ効率的な運転には、交通参加者の将来の軌跡を予測する能力が不可欠である。
本稿では,多エージェント軌道予測のための拡散モデルを提案する。
このモデルは、交通参加者と環境の間の複雑な相互作用を捉え、データのマルチモーダルな性質を正確に学習することができる。
論文 参考訳(メタデータ) (2024-03-18T10:35:15Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
本稿では,分布外ケースに対する頑健な一般化性を有する動き予測のための解釈可能な生成モデルを提案する。
このモデルでは, 長期目的地の空間分布を推定することにより, 目標駆動動作予測を実現する。
動き予測データセットの実験は、適合したモデルが解釈可能で一般化可能であることを検証した。
論文 参考訳(メタデータ) (2024-03-10T04:16:04Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - Self-Supervised Action-Space Prediction for Automated Driving [0.0]
本稿では,自動走行のための新しい学習型マルチモーダル軌道予測アーキテクチャを提案する。
学習問題を加速度と操舵角の空間に投入することにより、運動論的に実現可能な予測を実現する。
提案手法は,都市交差点とラウンドアバウトを含む実世界のデータセットを用いて評価する。
論文 参考訳(メタデータ) (2021-09-21T08:27:56Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
異種エージェントを含む多エージェント軌道予測のための汎用生成ニューラルシステムを提案する。
提案システムは, 軌道予測のための3つのベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-02-18T02:25:35Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
本稿では,マルチエージェント軌道予測のためのジェネリック生成ニューラルシステムを提案する。
また、車両軌道予測に効率的なキネマティック拘束層を応用した。
提案システムは,軌道予測のための3つの公開ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-14T20:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。