Industrially fabricated single-electron quantum dots in Si/Si-Ge heterostructures
- URL: http://arxiv.org/abs/2410.16913v2
- Date: Thu, 24 Oct 2024 09:59:16 GMT
- Title: Industrially fabricated single-electron quantum dots in Si/Si-Ge heterostructures
- Authors: Till Huckemann, Pascal Muster, Wolfram Langheinrich, Varvara Brackmann, Michael Friedrich, Nikola D. Komerički, Laura K. Diebel, Verena Stieß, Dominique Bougeard, Claus Dahl, Lars R. Schreiber, Hendrik Bluhm,
- Abstract summary: This paper reports the compatibility of heterostructure-based spin qubit devices with industrial CMOS technology.
It features Si/Si-Ge quantum dot devices fabricated using Infineon's 200 mm production line within a restricted thermal budget.
- Score: 0.0
- License:
- Abstract: This paper reports the compatibility of heterostructure-based spin qubit devices with industrial CMOS technology. It features Si/Si-Ge quantum dot devices fabricated using Infineon's 200 mm production line within a restricted thermal budget. The devices exhibit state-of-the-art charge sensing, charge noise and valley splitting characteristics, showing that industrial fabrication is not harming the heterostructure quality. These measured parameters are all correlated to spin qubit coherence and qubit gate fidelity. We describe the single electron device layout, design and its fabrication process using electron beam lithography. The incorporated standard 90 nm back-end of line flow for gate-layer independent contacting and wiring can be scaled up to multiple wiring layers for scalable quantum computing architectures. In addition, we present millikelvin characterization results. Our work exemplifies the potential of industrial fabrication methods to harness the inherent CMOS-compatibility of the Si/Si-Ge material system, despite being restricted to a reduced thermal budget. It paves the way for advanced quantum processor architectures with high yield and device quality.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Statistical evaluation of 571 GaAs quantum point contact transistors showing the 0.7 anomaly in quantized conductance using millikelvin cryogenic on-chip multiplexing [0.664586348103541]
We use a cryogenic on-chip multiplexer architecture and investigate the statistics of the 0.7 anomaly observed on the first three plateaus of the quantized conductance of semiconductor quantum point contact (QPC) transistors.
A total of 1280 quantum transistors with nano-scale dimensions are patterned in 5 different chips of GaAs heterostructures.
arXiv Detail & Related papers (2024-04-10T06:52:55Z) - Probing single electrons across 300 mm spin qubit wafers [0.0]
We present a testing process using a cryogenic 300 mm wafer prober to collect high-volume data on the performance of hundreds of industry-manufactured spin qubit devices at 1.6 K.
We analyze the random variation in single-electron operating voltages and find that the optimized fabrication process leads to low levels of disorder at the 300 mm scale.
arXiv Detail & Related papers (2023-07-10T18:02:55Z) - Jellybean quantum dots in silicon for qubit coupling and on-chip quantum
chemistry [0.6818394664182874]
Small size and excellent integrability of silicon metal-oxide-semiconductor (SiMOS) quantum dot spin qubits make them an attractive system for mass-manufacturable, scaled-up quantum processors.
This paper investigates the charge and spin characteristics of an elongated quantum dot for the prospects of acting as a qubit-qubit coupler.
arXiv Detail & Related papers (2022-08-08T12:24:46Z) - Simulating challenging correlated molecules and materials on the
Sycamore quantum processor [0.0]
Simulating complex molecules and materials is an anticipated application of quantum devices.
We simulate static and dynamical electronic structure on a superconducting quantum processor.
Our work serves to convert artificial measures of quantum advantage into a physically relevant setting.
arXiv Detail & Related papers (2022-03-29T07:11:40Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Qubits made by advanced semiconductor manufacturing [0.0]
Full-scale quantum computers require the integration of millions of quantum bits.
The promise of leveraging industrial semiconductor manufacturing to meet this requirement has fueled the pursuit of quantum computing in silicon quantum dots.
Here, we demonstrate quantum dots fabricated in a 300 mm semiconductor manufacturing facility using all-optical lithography and fully industrial processing.
arXiv Detail & Related papers (2021-01-29T15:41:39Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.