論文の概要: Learning Load Balancing with GNN in MPTCP-Enabled Heterogeneous Networks
- arxiv url: http://arxiv.org/abs/2410.17118v1
- Date: Tue, 22 Oct 2024 15:49:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:26:59.170778
- Title: Learning Load Balancing with GNN in MPTCP-Enabled Heterogeneous Networks
- Title(参考訳): MPTCP対応異種ネットワークにおけるGNNによる負荷分散学習
- Authors: Han Ji, Xiping Wu, Zhihong Zeng, Chen Chen,
- Abstract要約: 本稿では,MP TCP 対応 HetNet の LB 問題に対処するグラフニューラルネットワーク (GNN) モデルを提案する。
従来のディープニューラルネットワーク(DNN)と比較して、提案したGNNベースのモデルには2つの重要な長所がある。
- 参考スコア(独自算出の注目度): 13.178956651532213
- License:
- Abstract: Hybrid light fidelity (LiFi) and wireless fidelity (WiFi) networks are a promising paradigm of heterogeneous network (HetNet), attributed to the complementary physical properties of optical spectra and radio frequency. However, the current development of such HetNets is mostly bottlenecked by the existing transmission control protocol (TCP), which restricts the user equipment (UE) to connecting one access point (AP) at a time. While the ongoing investigation on multipath TCP (MPTCP) can bring significant benefits, it complicates the network topology of HetNets, making the existing load balancing (LB) learning models less effective. Driven by this, we propose a graph neural network (GNN)-based model to tackle the LB problem for MPTCP-enabled HetNets, which results in a partial mesh topology. Such a topology can be modeled as a graph, with the channel state information and data rate requirement embedded as node features, while the LB solutions are deemed as edge labels. Compared to the conventional deep neural network (DNN), the proposed GNN-based model exhibits two key strengths: i) it can better interpret a complex network topology; and ii) it can handle various numbers of APs and UEs with a single trained model. Simulation results show that against the traditional optimisation method, the proposed learning model can achieve near-optimal throughput within a gap of 11.5%, while reducing the inference time by 4 orders of magnitude. In contrast to the DNN model, the new method can improve the network throughput by up to 21.7%, at a similar inference time level.
- Abstract(参考訳): ハイブリッド光フィデリティ(LiFi)と無線フィデリティ(Wi-Fi)ネットワーク(Wi-Fi)は、光スペクトルと電波周波数の相補的な物理特性に起因するヘテロジニアスネットワーク(HetNet)の有望なパラダイムである。
しかし、現在のHetNetsの開発は、ユーザ機器(UE)が一度に1つのアクセスポイント(AP)を接続することを制限する既存のトランスミッション制御プロトコル(TCP)によって、ほとんどボトルネックになっている。
マルチパスTCP(MPTCP)の継続的な研究は大きなメリットをもたらすが、HetNetsのネットワークトポロジを複雑化し、既存のロードバランシング(LB)学習モデルをより効率的にする。
そこで我々は,MPTCP対応HetNetのLB問題に対処するグラフニューラルネットワーク(GNN)モデルを提案する。
このようなトポロジはグラフとしてモデル化することができ、チャネル状態情報とデータレート要求がノードの特徴として埋め込まれ、LBソリューションはエッジラベルと見なされる。
従来のディープニューラルネットワーク(DNN)と比較して、提案されたGNNベースのモデルには2つの長所がある。
一 複雑なネットワークトポロジをよりよく解釈でき、かつ
二 訓練された一つのモデルで様々なAPやUEを扱うことができる。
シミュレーションの結果,従来の最適化手法に対して,提案した学習モデルは11.5%のギャップ内でほぼ最適スループットを達成でき,推論時間を4桁に短縮できることがわかった。
DNNモデルとは対照的に、新しい手法は、同様の推論時間レベルで、ネットワークスループットを最大21.7%向上させることができる。
関連論文リスト
- Bayesian Inference Accelerator for Spiking Neural Networks [3.145754107337963]
スパイキングニューラルネットワーク(SNN)は、計算面積と電力を減らす可能性がある。
本研究では,効率的なベイズSNNをハードウェア上で開発・実装するための最適化フレームワークについて述べる。
我々は、完全精度のベルヌーイパラメータを持つベイジアンバイナリネットワークに匹敵するアキュラ級数を示し、最大25時間分のスパイクを減らした。
論文 参考訳(メタデータ) (2024-01-27T16:27:19Z) - Graph Neural Networks for Power Allocation in Wireless Networks with
Full Duplex Nodes [10.150768420975155]
ユーザ間の相互干渉のため、無線ネットワークにおける電力割り当て問題はしばしば自明ではない。
グラフグラフニューラルネットワーク(GNN)は、これらの問題に対処するための有望なアプローチとして最近登場し、無線ネットワークの基盤となるトポロジを活用するアプローチである。
論文 参考訳(メタデータ) (2023-03-27T10:59:09Z) - Adaptive Target-Condition Neural Network: DNN-Aided Load Balancing for
Hybrid LiFi and WiFi Networks [19.483289519348315]
機械学習は、複雑性に優しいロードバランシングソリューションを提供する可能性がある。
学習支援のSOTA(State-of-the-art)は,ネットワーク環境が変化すると再学習を必要とする。
適応目標条件ニューラルネットワーク(A-TCNN)と呼ばれる新しいディープニューラルネットワーク(DNN)構造を提案する。
論文 参考訳(メタデータ) (2022-08-09T20:46:13Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Scalable Power Control/Beamforming in Heterogeneous Wireless Networks
with Graph Neural Networks [6.631773993784724]
そこで本研究では,HIGNN(heterogeneous Interference Graphural Network)という,教師なし学習に基づく新しいフレームワークを提案する。
HIGNNは、小型ネットワークで訓練された後、堅牢なパフォーマンスで拡大するサイズのワイヤレスネットワークにスケーラブルです。
論文 参考訳(メタデータ) (2021-04-12T13:36:32Z) - Learning Power Control for Cellular Systems with Heterogeneous Graph
Neural Network [37.060397377445504]
電力制御ポリシには異なるPI特性とPE特性が組み合わさっており,既存のHetGNNはこれらの特性を満足していないことを示す。
We design a parameter sharing scheme for HetGNN that the learned relationship satisfed the desired properties。
論文 参考訳(メタデータ) (2020-11-06T02:41:38Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
パーティショニングエッジ学習(PARTEL)は、無線ネットワークにおいてよく知られた分散学習手法であるパラメータサーバトレーニングを実装している。
本稿では、いくつかの補助変数を導入してParticleELを用いてトレーニングできるディープニューラルネットワーク(DNN)モデルについて考察する。
論文 参考訳(メタデータ) (2020-10-08T15:27:50Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
本稿では,自由空間光(FSO)フロントホールネットワークにおける最適資源割り当てについて検討する。
我々は、FSOネットワーク構造を利用するために、ポリシーパラメータ化のためのグラフニューラルネットワーク(GNN)を検討する。
本アルゴリズムは,システムモデルに関する知識が不要なモデルフリーでGNNを訓練するために開発された。
論文 参考訳(メタデータ) (2020-06-26T14:20:48Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。