論文の概要: Scalable spectral representations for network multiagent control
- arxiv url: http://arxiv.org/abs/2410.17221v1
- Date: Tue, 22 Oct 2024 17:45:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:26:56.106140
- Title: Scalable spectral representations for network multiagent control
- Title(参考訳): ネットワークマルチエージェント制御のためのスケーラブルスペクトル表現
- Authors: Zhaolin Ren, Runyu, Zhang, Bo Dai, Na Li,
- Abstract要約: マルチエージェント制御の一般的なモデルであるNetwork Markov Decision Processes (MDPs)は、効率的な学習に重大な課題をもたらす。
まず、ネットワークMDPに対してスケーラブルなスペクトル局所表現を導出し、各エージェントの局所$Q$関数に対するネットワーク線形部分空間を誘導する。
我々は,連続的な状態対応ネットワークMDPのためのスケーラブルなアルゴリズムフレームワークを設計し,アルゴリズムの収束をエンドツーエンドで保証する。
- 参考スコア(独自算出の注目度): 53.631272539560435
- License:
- Abstract: Network Markov Decision Processes (MDPs), a popular model for multi-agent control, pose a significant challenge to efficient learning due to the exponential growth of the global state-action space with the number of agents. In this work, utilizing the exponential decay property of network dynamics, we first derive scalable spectral local representations for network MDPs, which induces a network linear subspace for the local $Q$-function of each agent. Building on these local spectral representations, we design a scalable algorithmic framework for continuous state-action network MDPs, and provide end-to-end guarantees for the convergence of our algorithm. Empirically, we validate the effectiveness of our scalable representation-based approach on two benchmark problems, and demonstrate the advantages of our approach over generic function approximation approaches to representing the local $Q$-functions.
- Abstract(参考訳): マルチエージェント制御の一般的なモデルであるネットワークマルコフ決定プロセス(MDPs)は,エージェント数の増加に伴い,グローバルステートアクション空間の指数関数的成長により,効率的な学習に重要な課題を提起する。
本研究では,ネットワーク力学の指数的減衰特性を利用して,まずネットワークMDPのスケーラブルなスペクトル局所表現を導出し,各エージェントの局所$Q$関数に対するネットワーク線形部分空間を誘導する。
これらの局所スペクトル表現に基づいて、連続的な状態-作用ネットワークMDPのためのスケーラブルなアルゴリズムフレームワークを設計し、アルゴリズムの収束をエンドツーエンドで保証する。
実験により、2つのベンチマーク問題に対するスケーラブルな表現ベースアプローチの有効性を検証し、局所的な$Q$関数を表現する汎用関数近似アプローチに対するアプローチの利点を実証する。
関連論文リスト
- SINR-Aware Deep Reinforcement Learning for Distributed Dynamic Channel
Allocation in Cognitive Interference Networks [10.514231683620517]
本稿では,複数の大規模ネットワークによるキャリヤ間干渉(ICI)とチャネル再利用を経験する実世界のシステムに焦点を当てる。
CARLTON(Channel Allocation RL To Overlapped Networks)と呼ばれる分散DCAのための新しいマルチエージェント強化学習フレームワークを提案する。
本結果は,従来の最先端手法に比べて優れた効率性を示し,優れた性能とロバストな一般化を示した。
論文 参考訳(メタデータ) (2024-02-17T20:03:02Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Region-Based Semantic Factorization in GANs [67.90498535507106]
本稿では,任意の画像領域についてGAN(Generative Adversarial Networks)が学習した潜在意味を分解するアルゴリズムを提案する。
適切に定義された一般化されたレイリー商を通して、アノテーションや訓練なしにそのような問題を解く。
様々な最先端のGANモデルに対する実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-02-19T17:46:02Z) - Soft Hierarchical Graph Recurrent Networks for Many-Agent Partially
Observable Environments [9.067091068256747]
本稿では,階層型グラフ再帰ネットワーク(HGRN)と呼ばれる新しいネットワーク構造を提案する。
以上の技術に基づいて,Soft-HGRNと呼ばれる値に基づくMADRLアルゴリズムと,SAC-HRGNというアクタクリティカルな変種を提案する。
論文 参考訳(メタデータ) (2021-09-05T09:51:25Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
強化学習 (Reinforcement Learning, RL) は, 意思決定および最適制御プロセスのための有望な解法として広く研究されている。
本稿では,Adaptive ADMM (asI-ADMM)アルゴリズムを提案する。
実験の結果,提案アルゴリズムは通信コストやスケーラビリティの観点から技術状況よりも優れており,複雑なIoT環境に適応できることがわかった。
論文 参考訳(メタデータ) (2021-06-30T16:49:07Z) - Multi-Source Domain Adaptation for Object Detection [52.87890831055648]
我々は、Divide-and-Merge Spindle Network (DMSN)と呼ばれる、より高速なR-CNNベースのフレームワークを提案する。
DMSNはドメイン非ネイティブを同時に強化し、識別力を維持することができる。
擬似目標部分集合の最適パラメータを近似する新しい擬似学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-06-30T03:17:20Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
センサローカライゼーションの現実問題において,ネットワークトポロジと異なるアルゴリズムの収束率の関係について検討する。
また、ADMMと持ち上げマルコフ連鎖の間の興味深い関係を示すとともに、その収束を明示的に特徴づける。
論文 参考訳(メタデータ) (2020-09-05T21:44:39Z) - Scalable Multi-Agent Reinforcement Learning for Networked Systems with
Average Reward [17.925681736096482]
マルチエージェント強化学習(MARL)が大きなスケーラビリティの問題に直面していることは長年認識されてきた。
本稿では、モデルが局所的な依存構造を示し、スケーラブルな方法で解けるような、ネットワーク化されたMARL問題のリッチなクラスを同定する。
論文 参考訳(メタデータ) (2020-06-11T17:23:17Z) - Multi-Agent Reinforcement Learning in Stochastic Networked Systems [30.78949372661673]
エージェントネットワークにおけるマルチエージェント強化学習(MARL)について検討する。
目的は、世界的報酬を最大化する局所的な政策を見つけることである。
論文 参考訳(メタデータ) (2020-06-11T16:08:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。