論文の概要: Explore the Use of Time Series Foundation Model for Car-Following Behavior Analysis
- arxiv url: http://arxiv.org/abs/2501.07034v1
- Date: Mon, 13 Jan 2025 03:13:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:23:03.127367
- Title: Explore the Use of Time Series Foundation Model for Car-Following Behavior Analysis
- Title(参考訳): 自動車追従行動解析における時系列基礎モデルの適用
- Authors: Luwei Zeng, Runze Yan,
- Abstract要約: 自動車追従行動のモデル化は、交通シミュレーション、運転パターンの分析、複雑な交通の流れの理解に不可欠である。
機械学習とディープラーニングは複雑なパターンをキャプチャするが、大きなラベル付きデータセットが必要である。
ファンデーションモデルは、膨大な多様な時系列データセットに基づいて事前訓練された、より効率的な代替手段を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Modeling car-following behavior is essential for traffic simulation, analyzing driving patterns, and understanding complex traffic flows with varying levels of autonomous vehicles. Traditional models like the Safe Distance Model and Intelligent Driver Model (IDM) require precise parameter calibration and often lack generality due to simplified assumptions about driver behavior. While machine learning and deep learning methods capture complex patterns, they require large labeled datasets. Foundation models provide a more efficient alternative. Pre-trained on vast, diverse time series datasets, they can be applied directly to various tasks without the need for extensive re-training. These models generalize well across domains, and with minimal fine-tuning, they can be adapted to specific tasks like car-following behavior prediction. In this paper, we apply Chronos, a state-of-the-art public time series foundation model, to analyze car-following behavior using the Open ACC dataset. Without fine-tuning, Chronos outperforms traditional models like IDM and Exponential smoothing with trend and seasonality (ETS), and achieves similar results to deep learning models such as DeepAR and TFT, with an RMSE of 0.60. After fine-tuning, Chronos reduces the error to an RMSE of 0.53, representing a 33.75% improvement over IDM and a 12-37% reduction compared to machine learning models like ETS and deep learning models including DeepAR, WaveNet, and TFT. This demonstrates the potential of foundation models to significantly advance transportation research, offering a scalable, adaptable, and highly accurate approach to predicting and simulating car-following behaviors.
- Abstract(参考訳): 自動車追従行動のモデル化は、交通シミュレーション、運転パターンの分析、様々なレベルの自動運転車による複雑な交通の流れの理解に不可欠である。
Safe Distance Model や Intelligent Driver Model (IDM) のような従来のモデルでは正確なパラメータのキャリブレーションが必要であり、ドライバの振る舞いに関する仮定が単純化されているため、一般性を欠いていることが多い。
機械学習とディープラーニングは複雑なパターンをキャプチャするが、大きなラベル付きデータセットが必要である。
ファンデーションモデルはより効率的な代替手段を提供する。
膨大な多様な時系列データセットを事前トレーニングすることで、広範な再トレーニングを必要とせずに、さまざまなタスクに直接適用することができる。
これらのモデルはドメイン全体にわたってよく一般化され、最小限の微調整で、車追従行動予測のような特定のタスクに適応できる。
本稿では,現在最先端の公開時系列基盤モデルであるChronosを用いて,Open ACCデータセットを用いて自動車追従挙動を解析する。
微調整なしでは、ChronosはIMMやExponential smoothing(ETS)のような従来のモデルよりも優れており、DeepARやTFTといったディープラーニングモデルと同様の結果をRMSE 0.60で達成している。
微調整後、Chronos はエラーを RMSE 0.53 に減らし、EMM よりも 33.75% 改善し、ETS や DeepAR、WaveNet、TFT といったディープラーニングモデルと比較して 12-37% 削減した。
これは、輸送研究を著しく前進させる基礎モデルの可能性を示し、自動車追従行動の予測とシミュレーションにスケーラブルで適応性があり、高度に正確なアプローチを提供する。
関連論文リスト
- Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational Deep Learning(DL)モデルは、多種多様で多様なデータセットに基づいてトレーニングされた一般的なモデルである。
本稿では,無線信号を用いた基礎DLモデルの事前学習のための,新しい自己教師型学習手法であるMasked Spectrogram Modelingを紹介する。
論文 参考訳(メタデータ) (2024-11-14T23:56:57Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
論文 参考訳(メタデータ) (2024-06-23T15:30:40Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
模倣学習によって訓練された視覚ベースのエンドツーエンドの運転モデルは、自動運転のための安価なソリューションにつながる可能性がある。
トレーニング中に損失項を追加することにより、これらのモデルの注意を誘導し、運転品質を向上させる方法について検討する。
従来の研究とは対照的に,本手法では,テスト期間中にこれらの有意義なセマンティックマップを利用できない。
論文 参考訳(メタデータ) (2024-04-30T23:18:51Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - An active inference model of car following: Advantages and applications [6.905724739762358]
ドライバープロセスモデルは、自動および自律走行車技術のテスト、検証、開発において中心的な役割を果たす。
データ駆動機械学習モデルは、ルールベースのモデルよりも能力が高いが、大規模なトレーニングデータセットの必要性と、解釈可能性の欠如によって制限されている。
本稿では,解釈可能性を維持しつつ,データ駆動モデルに匹敵する振る舞いの柔軟性を有するアクティブ推論を用いたモデリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-27T13:39:26Z) - IDM-Follower: A Model-Informed Deep Learning Method for Long-Sequence
Car-Following Trajectory Prediction [24.94160059351764]
ほとんどの自動車追従モデルは生成的であり、最後のステップの速度、位置、加速度の入力のみを考慮する。
2つの独立したエンコーダと、次の軌道を逐次予測できる自己アテンションデコーダを備えた新しい構造を実装した。
シミュレーションとNGSIMデータセットの複数の設定による数値実験により、IMM-Followerは予測性能を向上させることができることが示された。
論文 参考訳(メタデータ) (2022-10-20T02:24:27Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Domain-aware Control-oriented Neural Models for Autonomous Underwater
Vehicles [2.4779082385578337]
ドメイン認識のレベルが異なる制御指向パラメトリックモデルを提案する。
データ駆動型ブラックボックスとAUVダイナミクスのグレイボックス表現を構築するために、普遍微分方程式を用いる。
論文 参考訳(メタデータ) (2022-08-15T17:01:14Z) - Iterative Semi-parametric Dynamics Model Learning For Autonomous Racing [2.40966076588569]
本稿では,ニューラルネットワークを用いた反復学習セミパラメトリックモデルを自律レースの課題に適用する。
我々のモデルは純粋にパラメトリックモデルよりも正確に学習でき、純粋に非パラメトリックモデルよりもより一般化できることを示す。
論文 参考訳(メタデータ) (2020-11-17T16:24:10Z) - Fast, Accurate, and Simple Models for Tabular Data via Augmented
Distillation [97.42894942391575]
本研究では、FAST-DADを用いて、任意の複雑なアンサンブル予測を、高木、無作為林、深層ネットワークなどの個々のモデルに抽出する。
我々の個々の蒸留モデルは、H2O/AutoSklearnのようなAutoMLツールが生成するアンサンブル予測よりも10倍高速で精度が高い。
論文 参考訳(メタデータ) (2020-06-25T09:57:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。