論文の概要: Enhancing Robustness and Efficiency of Least Square Twin SVM via Granular Computing
- arxiv url: http://arxiv.org/abs/2410.17338v1
- Date: Tue, 22 Oct 2024 18:13:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:55:28.110580
- Title: Enhancing Robustness and Efficiency of Least Square Twin SVM via Granular Computing
- Title(参考訳): グラニュラーコンピューティングによる最小二乗SVMのロバスト性と効率向上
- Authors: M. Tanveer, R. K. Sharma, A. Quadir, M. Sajid,
- Abstract要約: 機械学習の分野では、最小二乗サポートベクターマシン(LSTSVM)が最先端モデルの1つとして際立っている。
LSTSVMはノイズやインバージョンに対する感受性に悩まされており、リサンプリングの原則と不安定さを見落としている。
そこで我々は,従来のデータポイントの代わりに粒状球を用いて学習した,頑健な粒状球 LSTSVM (GBLSTSVM) を提案する。
- 参考スコア(独自算出の注目度): 0.2999888908665658
- License:
- Abstract: In the domain of machine learning, least square twin support vector machine (LSTSVM) stands out as one of the state-of-the-art models. However, LSTSVM suffers from sensitivity to noise and outliers, overlooking the SRM principle and instability in resampling. Moreover, its computational complexity and reliance on matrix inversions hinder the efficient processing of large datasets. As a remedy to the aforementioned challenges, we propose the robust granular ball LSTSVM (GBLSTSVM). GBLSTSVM is trained using granular balls instead of original data points. The core of a granular ball is found at its center, where it encapsulates all the pertinent information of the data points within the ball of specified radius. To improve scalability and efficiency, we further introduce the large-scale GBLSTSVM (LS-GBLSTSVM), which incorporates the SRM principle through regularization terms. Experiments are performed on UCI, KEEL, and NDC benchmark datasets; both the proposed GBLSTSVM and LS-GBLSTSVM models consistently outperform the baseline models.
- Abstract(参考訳): 機械学習の分野では、最小二乗サポートベクターマシン(LSTSVM)が最先端モデルの1つとして際立っている。
しかし、LSTSVMはノイズや外れ値に対する感度に悩まされ、SRMの原則と再サンプリングの不安定さを見落としている。
さらに、その計算複雑性と行列逆変換への依存は、大規模なデータセットの効率的な処理を妨げる。
上記の課題に対する対策として,頑健な粒状球 LSTSVM (GBLSTSVM) を提案する。
GBLSTSVMは、オリジナルのデータポイントの代わりにグラニュラーボールを使って訓練されている。
グラニュラーボールのコアはその中心にあり、そこでは、指定された半径のボール内のデータポイントの関連する情報を全てカプセル化している。
スケーラビリティと効率性を改善するため,SRMの原理を正規化項で組み込んだ大規模GBLSTSVM (LS-GBLSTSVM) を導入する。
UCI、KEEL、NDCベンチマークデータセットで実験が行われ、提案されたGBLSTSVMとLS-GBLSTSVMモデルはベースラインモデルより一貫して優れている。
関連論文リスト
- Enhanced Feature Based Granular Ball Twin Support Vector Machine [0.5492530316344587]
機能強化型グラニュラーボールツインサポートベクター(EF-GBTSVM)を提案する。
提案モデルでは,個々のデータサンプルではなく,粒状(GB)の粗粒度を入力として用いた。
ベンチマーク UCI および KEEL データセット上で提案した EF-GBTSVM モデルを徹底的に評価する。
論文 参考訳(メタデータ) (2024-10-08T08:10:43Z) - Granular Ball Twin Support Vector Machine [0.0]
MixtureTwinサポートベクターマシン(TSVM)における非パラメトリック可能性推定器は、分類および回帰作業に多目的に適用可能な、新興機械学習モデルである。
TSVMは、その効率性と大規模データセットの適用性に対する重大な障害に直面している。
粒状球双対支持ベクトルマシン(GBTSVM)と大型球双対支持ベクトルマシン(LS-GBTSVM)を提案する。
UCI,KEEL,NDCデータセットのベンチマークデータセットを用いて,GBTSVMおよびLS-GBTSVMモデルの総合評価を行う。
論文 参考訳(メタデータ) (2024-10-07T06:20:36Z) - GL-TSVM: A robust and smooth twin support vector machine with guardian loss function [0.0]
非対称,有界,スムーズな特徴を特徴とする新規な損失関数であるガーディアンロス(G-loss)を導入する。
構造リスク最小化(SRM)の原則に従うため,正規化項をGL-TSVMの目的関数に組み込む。
UCIデータセットとKEELデータセットの実験的解析は,提案したGL-TSVMの有効性を裏付けるものである。
論文 参考訳(メタデータ) (2024-08-29T08:14:20Z) - Separability and Scatteredness (S&S) Ratio-Based Efficient SVM
Regularization Parameter, Kernel, and Kernel Parameter Selection [10.66048003460524]
Support Vector Machine (SVM)は、分類、回帰、外れ値検出に広く応用された堅牢な機械学習アルゴリズムである。
本研究では,SVMの性能をデータの分離性と分散性(S&S)の関数としてモデル化できることを示す。
論文 参考訳(メタデータ) (2023-05-17T13:51:43Z) - GBSVM: Granular-ball Support Vector Machine [46.60182022640765]
GBSVMは、単一データポイントではなく、グラニュラーボールの粗粒度を入力として使用する分類器を構築するための重要な試みである。
本稿では,既存のGBSVMの原モデルの誤りを修正し,その二重モデルを導出する。
UCIベンチマークデータセットの実験結果は、GBSVMが堅牢性と効率性に優れていることを示している。
論文 参考訳(メタデータ) (2022-10-06T09:11:44Z) - Parameter-Efficient Sparsity for Large Language Models Fine-Tuning [63.321205487234074]
私たちはaを提案します。
Sparse- efficient Sparse Training (PST) は、スパース・アウェア・トレーニング中にトレーニング可能なパラメータの数を減少させる手法である。
多様なネットワーク(BERT、RoBERTa、GPT-2)を用いた実験では、PSTは従来のスパーシリティ法よりも同等以上の性能を示した。
論文 参考訳(メタデータ) (2022-05-23T02:43:45Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
メタクラスタリング学習(MCL)と呼ばれる「大規模タスクのための小さなデータ」パラダイムを提案する。
MCLは、第1フェーズのトレーニングのためにコンピューティングを節約するためにクラスタリングを介して、未ラベルデータのサブセットを擬似ラベル付けするのみである。
提案手法は計算コストを大幅に削減すると同時に,従来よりも優れた性能を実現している。
論文 参考訳(メタデータ) (2021-11-19T04:10:18Z) - Estimating Average Treatment Effects with Support Vector Machines [77.34726150561087]
サポートベクターマシン(SVM)は、機械学習文献で最も人気のある分類アルゴリズムの1つです。
我々はsvmをカーネルベースの重み付け手順として適用し,治療群と制御群の最大平均差を最小化する。
このトレードオフから生じる因果効果推定のバイアスを特徴づけ、提案されたSVM手順と既存のカーネルバランシング手法を結びつけます。
論文 参考訳(メタデータ) (2021-02-23T20:22:56Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z) - On Coresets for Support Vector Machines [61.928187390362176]
coresetは、元のデータポイントの小さな、代表的なサブセットである。
我々は,本アルゴリズムを用いて,既製のSVMソルバをストリーミング,分散,動的データ設定に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-02-15T23:25:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。