論文の概要: Pitfalls of topology-aware image segmentation
- arxiv url: http://arxiv.org/abs/2412.14619v1
- Date: Thu, 19 Dec 2024 08:11:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:33:42.229346
- Title: Pitfalls of topology-aware image segmentation
- Title(参考訳): 位相認識画像セグメンテーションの落とし穴
- Authors: Alexander H. Berger, Laurin Lux, Alexander Weers, Martin Menten, Daniel Rueckert, Johannes C. Paetzold,
- Abstract要約: 我々は、不適切な接続選択、見過ごされたトポロジカルアーティファクト、評価指標の不適切な使用を含むモデル評価における致命的な落とし穴を同定する。
本稿では,トポロジを意識した医用画像分割手法の公正かつ堅牢な評価基準を確立するための,行動可能なレコメンデーションセットを提案する。
- 参考スコア(独自算出の注目度): 81.19923502845441
- License:
- Abstract: Topological correctness, i.e., the preservation of structural integrity and specific characteristics of shape, is a fundamental requirement for medical imaging tasks, such as neuron or vessel segmentation. Despite the recent surge in topology-aware methods addressing this challenge, their real-world applicability is hindered by flawed benchmarking practices. In this paper, we identify critical pitfalls in model evaluation that include inadequate connectivity choices, overlooked topological artifacts in ground truth annotations, and inappropriate use of evaluation metrics. Through detailed empirical analysis, we uncover these issues' profound impact on the evaluation and ranking of segmentation methods. Drawing from our findings, we propose a set of actionable recommendations to establish fair and robust evaluation standards for topology-aware medical image segmentation methods.
- Abstract(参考訳): トポロジカルな正しさ、すなわち構造的整合性の保存と形状の特異性は、ニューロンや血管セグメンテーションなどの医療画像処理の基本的な要件である。
この課題に対処するトポロジ対応メソッドの最近の増加にもかかわらず、実際の適用性は、欠陥のあるベンチマークプラクティスによって妨げられている。
本稿では,不適切な接続選択,地中真理アノテーションにおける見過ごされたトポロジカルアーティファクト,評価指標の不適切な使用を含むモデル評価における致命的な落とし穴を同定する。
詳細な実証分析を通して,これらの課題がセグメンテーション手法の評価とランキングに与える影響を明らかにする。
そこで本研究では, トポロジを意識した医用画像分割手法の公正かつ堅牢な評価基準を確立するための, 実用的な勧告セットを提案する。
関連論文リスト
- The Skin Game: Revolutionizing Standards for AI Dermatology Model Comparison [0.6144680854063939]
皮膚画像分類における深層学習アプローチは有望な結果を示しているが、適切な評価を妨げる重要な方法論的課題に直面している。
本稿では、皮膚疾患分類研究における現在の方法論の体系的分析を行い、データ準備、強化戦略、パフォーマンス報告におけるかなりの不整合を明らかにした。
本稿では、厳密なデータ準備、系統的誤り解析、異なる画像タイプのための特別なプロトコルを強調し、モデル開発、評価、臨床展開のための包括的な方法論的勧告を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:15:36Z) - Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:20:14Z) - Virtually Objective Quantification of in vitro Wound Healing Scratch Assays with the Segment Anything Model [0.19999259391104385]
細胞生物学において、インビトロ・スクラッチ・アッセイ(in vitro scratch assay)は、傷の閉鎖率を評価するために広く用いられている。
本稿では,対話型ポイントプロンプトに基づくディープ・ファンデーション・モデルであるセグメント・アプライス・モデルを利用する。
結果は、ドメインエキスパートの手作業によるセグメンテーションと比較しても、サーバ内およびサーバ間の変動が非常に少なかった。
論文 参考訳(メタデータ) (2024-07-02T11:45:56Z) - Topologically Faithful Multi-class Segmentation in Medical Images [43.6770098513581]
位相的に忠実な多クラスセグメンテーションのための一般損失関数を提案する。
我々はNクラス分割問題をNクラス分割タスクに投射する。
心筋, 細胞, 動脈静脈, およびWillisセグメンテーションの局所的正当性は, 著明に向上する。
論文 参考訳(メタデータ) (2024-03-16T19:11:57Z) - DARE: Towards Robust Text Explanations in Biomedical and Healthcare
Applications [54.93807822347193]
帰属ロバスト性評価手法を与えられたドメインに適応させ、ドメイン固有の妥当性を考慮する方法を示す。
次に,DAREが特徴とする脆さを軽減するために,対人訓練とFAR訓練の2つの方法を提案する。
最後に,確立した3つのバイオメディカル・ベンチマークを用いて実験を行い,本手法を実証的に検証した。
論文 参考訳(メタデータ) (2023-07-05T08:11:40Z) - Topologically Regularized Data Embeddings [15.001598256750619]
低次元埋め込みにトポロジ的事前知識を組み込むための代数的トポロジに基づく汎用的アプローチを導入する。
正規化器としてそのような位相損失関数を用いて埋め込み損失を共同最適化すると、局所的な近似だけでなく所望の位相構造も反映する埋め込みが得られることを示す。
線形および非線形次元削減法とグラフ埋め込み法を組み合わせた計算効率,堅牢性,汎用性に関する提案手法を実験的に評価した。
論文 参考訳(メタデータ) (2023-01-09T13:49:47Z) - Metrics reloaded: Recommendations for image analysis validation [59.60445111432934]
メトリクスのリロード(Metrics Reloaded)は、メトリクスの問題を意識した選択において研究者を導く包括的なフレームワークである。
このフレームワークは多段階のDelphiプロセスで開発され、問題指紋という新しい概念に基づいている。
問題指紋に基づいて、ユーザは適切なバリデーションメトリクスを選択して適用するプロセスを通じてガイドされる。
論文 参考訳(メタデータ) (2022-06-03T15:56:51Z) - Topological Similarity Index and Loss Function for Blood Vessel
Segmentation [0.0]
そこで本研究では,予測されたセグメントの一貫性を基礎的真理に言及した類似度指数を提案する。
また、形態的閉鎖演算子に基づく新しい損失関数を設計し、より位相的に一貫性のあるマスクを生成するディープニューラルネットワークモデルを学習する方法を示す。
論文 参考訳(メタデータ) (2021-07-30T10:24:47Z) - Common Limitations of Image Processing Metrics: A Picture Story [58.83274952067888]
本論文は, 画像レベルの分類, セマンティックセグメンテーション, インスタンスセグメンテーション, オブジェクト検出タスクと表現できるバイオメディカル画像解析問題に焦点を当てる。
現在のバージョンは、世界中の60以上の機関からの画像分析の専門家からなる国際コンソーシアムが実施するメトリクスに関するDelphiプロセスに基づいている。
論文 参考訳(メタデータ) (2021-04-12T17:03:42Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。