FairLoRA: Unpacking Bias Mitigation in Vision Models with Fairness-Driven Low-Rank Adaptation
- URL: http://arxiv.org/abs/2410.17358v1
- Date: Tue, 22 Oct 2024 18:50:36 GMT
- Title: FairLoRA: Unpacking Bias Mitigation in Vision Models with Fairness-Driven Low-Rank Adaptation
- Authors: Rohan Sukumaran, Aarash Feizi, Adriana Romero-Sorian, Golnoosh Farnadi,
- Abstract summary: We introduce FairLoRA, a novel fairness-specific regularizer for Low Rank Adaptation (LoRA)
Our results demonstrate that the need for higher ranks to mitigate bias is not universal; it depends on factors such as the pre-trained model, dataset, and task.
- Score: 3.959853359438669
- License:
- Abstract: Recent advances in parameter-efficient fine-tuning methods, such as Low Rank Adaptation (LoRA), have gained significant attention for their ability to efficiently adapt large foundational models to various downstream tasks. These methods are appreciated for achieving performance comparable to full fine-tuning on aggregate-level metrics, while significantly reducing computational costs. To systematically address fairness in LLMs previous studies fine-tune on fairness specific data using a larger LoRA rank than typically used. In this paper, we introduce FairLoRA, a novel fairness-specific regularizer for LoRA aimed at reducing performance disparities across data subgroups by minimizing per-class variance in loss. To the best of our knowledge, we are the first to introduce a fairness based finetuning through LoRA. Our results demonstrate that the need for higher ranks to mitigate bias is not universal; it depends on factors such as the pre-trained model, dataset, and task. More importantly, we systematically evaluate FairLoRA across various vision models, including ViT, DiNO, and CLIP, in scenarios involving distribution shifts. We further emphasize the necessity of using multiple fairness metrics to obtain a holistic assessment of fairness, rather than relying solely on the metric optimized during training.
Related papers
- Why Gradient Subspace? Identifying and Mitigating LoRA's Bottlenecks in Federated Fine-Tuning of Large Language Models [21.953204885495573]
This paper critically analyzes the convergence and performance guarantees of popular FL frameworks utilizing Low-Rank Adaptation (LoRA)
We demonstrate that direct weight averaging outperforms LoRA-based strategies, leading to superior performance for fine-tuned models.
Our findings show that GaLore is a more effective alternative, outperforming federated LoRA methods like FlexLoRA and FFA-LoRA across both text and image modalities.
arXiv Detail & Related papers (2024-10-30T15:23:44Z) - LoRA vs Full Fine-tuning: An Illusion of Equivalence [76.11938177294178]
We study how different fine-tuning methods change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties.
We find that full fine-tuning and LoRA yield weight matrices whose singular value decompositions exhibit very different structure.
We conclude by examining why intruder dimensions appear in LoRA fine-tuned models, why they are undesirable, and how their effects can be minimized.
arXiv Detail & Related papers (2024-10-28T17:14:01Z) - Preference Learning Algorithms Do Not Learn Preference Rankings [62.335733662381884]
We study the conventional wisdom that preference learning trains models to assign higher likelihoods to more preferred outputs than less preferred outputs.
We find that most state-of-the-art preference-tuned models achieve a ranking accuracy of less than 60% on common preference datasets.
arXiv Detail & Related papers (2024-05-29T21:29:44Z) - On Fairness of Low-Rank Adaptation of Large Models [14.522061948788863]
Low-rank adaptation of large models, particularly LoRA, has gained traction due to its computational efficiency.
We ask whether LoRA has an unexamined impact on utility, calibration, and resistance to membership inference across different subgroups.
arXiv Detail & Related papers (2024-05-27T07:37:43Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
We introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process.
We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.
arXiv Detail & Related papers (2024-01-20T20:25:17Z) - Inference-time Stochastic Ranking with Risk Control [19.20938164194589]
Learning to Rank methods are vital in online economies, affecting users and item providers.
We propose a novel method that performs ranking at inference time with guanranteed utility or fairness given pretrained scoring functions.
arXiv Detail & Related papers (2023-06-12T15:44:58Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
We propose FairAdaBN, which makes batch normalization adaptive to sensitive attribute.
We propose a new metric, named Fairness-Accuracy Trade-off Efficiency (FATE), to compute normalized fairness improvement over accuracy drop.
Experiments on two dermatological datasets show that our proposed method outperforms other methods on fairness criteria and FATE.
arXiv Detail & Related papers (2023-03-15T02:22:07Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - Fairness Reprogramming [42.65700878967251]
We propose a new generic fairness learning paradigm, called FairReprogram, which incorporates the model reprogramming technique.
Specifically, FairReprogram considers the case where models can not be changed and appends to the input a set of perturbations, called the fairness trigger.
We show both theoretically and empirically that the fairness trigger can effectively obscure demographic biases in the output prediction of fixed ML models.
arXiv Detail & Related papers (2022-09-21T09:37:00Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.