論文の概要: PtychoFormer: A Transformer-based Model for Ptychographic Phase Retrieval
- arxiv url: http://arxiv.org/abs/2410.17377v1
- Date: Tue, 22 Oct 2024 19:26:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:55:07.544035
- Title: PtychoFormer: A Transformer-based Model for Ptychographic Phase Retrieval
- Title(参考訳): PtychoFormer: 画像位相検索のためのトランスフォーマーベースモデル
- Authors: Ryuma Nakahata, Shehtab Zaman, Mingyuan Zhang, Fake Lu, Kenneth Chiu,
- Abstract要約: データ駆動単発写真位相検索のための階層型トランスフォーマーモデルを提案する。
本モデルでは, 細かな走査回折パターンに対する耐性を示し, 画像の再生速度は, 拡張された胸部反復エンジン (ePIE) の最大3600倍に向上した。
- 参考スコア(独自算出の注目度): 9.425754476649796
- License:
- Abstract: Ptychography is a computational method of microscopy that recovers high-resolution transmission images of samples from a series of diffraction patterns. While conventional phase retrieval algorithms can iteratively recover the images, they require oversampled diffraction patterns, incur significant computational costs, and struggle to recover the absolute phase of the sample's transmission function. Deep learning algorithms for ptychography are a promising approach to resolving the limitations of iterative algorithms. We present PtychoFormer, a hierarchical transformer-based model for data-driven single-shot ptychographic phase retrieval. PtychoFormer processes subsets of diffraction patterns, generating local inferences that are seamlessly stitched together to produce a high-quality reconstruction. Our model exhibits tolerance to sparsely scanned diffraction patterns and achieves up to 3600 times faster imaging speed than the extended ptychographic iterative engine (ePIE). We also propose the extended-PtychoFormer (ePF), a hybrid approach that combines the benefits of PtychoFormer with the ePIE. ePF minimizes global phase shifts and significantly enhances reconstruction quality, achieving state-of-the-art phase retrieval in ptychography.
- Abstract(参考訳): Ptychographyは、一連の回折パターンから試料の高分解能透過画像を復元する顕微鏡の計算方法である。
従来の位相探索アルゴリズムは画像を反復的に復元するが、過度にサンプリングされた回折パターン、計算コストの増大、サンプルの透過関数の絶対位相の回復に苦労する必要がある。
ptychographyのディープラーニングアルゴリズムは、反復アルゴリズムの限界を解決するための有望なアプローチである。
PtychoFormerは階層型トランスフォーマーベースモデルで,データ駆動型単発写真位相検索を行う。
PtychoFormerは回折パターンのサブセットを処理し、シームレスに縫合された局所的な推論を生成して高品質な再構成を生成する。
本モデルでは, 細かな走査回折パターンに対する耐性を示し, 画像の高速化は, 拡張された胸部画像反復エンジン (ePIE) の3600倍にも達する。
また、PtychoFormerとePIEの利点を組み合わせたハイブリッドアプローチである拡張PtychoFormer(ePF)を提案する。
ePFは,大域的な位相シフトを最小化し,再現性を大幅に向上し,画像診断における最先端の位相検索を実現する。
関連論文リスト
- Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
拡散モデルは、大規模な生成画像モデルの分野を支配してきた。
本研究では,大規模な事前学習拡散モデルにおける高速拘束サンプリングのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-24T14:52:38Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - PtychoDV: Vision Transformer-Based Deep Unrolling Network for
Ptychographic Image Reconstruction [12.780951605821238]
PtychoDVは、効率的で高品質な画像再構成のために設計された、新しいディープモデルベースのネットワークである。
シミュレーションデータの結果,PtychoDVは既存のディープラーニング手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-11T14:01:36Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
我々は,飽和画素を学習潜時マップでモデル化するデータ駆動型手法を開発した。
新しいモデルに基づいて、非盲検除色タスクを最大後部(MAP)問題に定式化することができる。
増幅されたアーティファクトを使わずに高品質な劣化画像を推定するために,我々は事前推定ネットワークを構築した。
論文 参考訳(メタデータ) (2023-08-10T12:53:30Z) - Unfolding-Aided Bootstrapped Phase Retrieval in Optical Imaging [24.59954532409386]
光画像における位相検索は、位相のないデータからの複素信号の回復を指す。
モデル駆動型ネットワークやディープ・アンフォールディングのハイブリッドアプローチは、効果的な代替手段として現れている。
本稿では, 近距離, 中間域, 遠距離領域にかかわらず, ブートストラップによる深部展開のアルゴリズムと応用について概説する。
論文 参考訳(メタデータ) (2022-03-03T13:00:07Z) - Deep Iterative Phase Retrieval for Ptychography [13.49645012479288]
物体を回折パターンから再構成するには、逆フーリエ変換を計算しなければならない。
本研究では,複数の重なり合う回折画像から物体を再構成する,回折イメージングのサブフィールドであるptychographyについて考察する。
本稿では,既存の反復位相探索アルゴリズムをニューラルネットワークで拡張し,各繰り返しの結果を精査する手法を提案する。
論文 参考訳(メタデータ) (2022-02-17T09:13:35Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
本稿では,ISTAアルゴリズムの展開に基づく時空間領域におけるサブNyquistサンプルからの再構成手法を提案する。
本手法は,高品質な撮像性能を確保しつつ,配列要素数,サンプリングレート,計算時間を削減できる。
論文 参考訳(メタデータ) (2021-03-01T19:19:38Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
本稿では,一対の相補的な旅先を含むLRD画像モデルを提案する。
次に、画像CSのためのRDモデルに基づく新しいハイブリッド・プラグイン・アンド・プレイ・フレームワークを提案する。
そこで,提案したH-based image CS問題の解法として,単純で効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-16T08:17:44Z) - Real-time sparse-sampled Ptychographic imaging through deep neural
networks [3.3351024234383946]
データの取得と解析の両方に制約を課す複雑な逆問題の解法により、画像再構成を実現する。
本稿では,深部畳み込みニューラルネットワークに基づく画像再構成問題の解法として,PtychoNNを提案する。
論文 参考訳(メタデータ) (2020-04-15T23:43:17Z) - u-net CNN based fourier ptychography [5.46367622374939]
本稿では,畳み込みニューラルネットワークに基づく新しい検索アルゴリズムを提案する。
実験により, システム収差下において, 再現性が向上し, より堅牢であることが確認された。
論文 参考訳(メタデータ) (2020-03-16T22:48:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。