論文の概要: Deep Iterative Phase Retrieval for Ptychography
- arxiv url: http://arxiv.org/abs/2202.10573v1
- Date: Thu, 17 Feb 2022 09:13:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-27 17:39:12.467020
- Title: Deep Iterative Phase Retrieval for Ptychography
- Title(参考訳): ptychographyにおける深部反復位相検索
- Authors: Simon Welker, Tal Peer, Henry N. Chapman, Timo Gerkmann
- Abstract要約: 物体を回折パターンから再構成するには、逆フーリエ変換を計算しなければならない。
本研究では,複数の重なり合う回折画像から物体を再構成する,回折イメージングのサブフィールドであるptychographyについて考察する。
本稿では,既存の反復位相探索アルゴリズムをニューラルネットワークで拡張し,各繰り返しの結果を精査する手法を提案する。
- 参考スコア(独自算出の注目度): 13.49645012479288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most prominent challenges in the field of diffractive imaging is
the phase retrieval (PR) problem: In order to reconstruct an object from its
diffraction pattern, the inverse Fourier transform must be computed. This is
only possible given the full complex-valued diffraction data, i.e. magnitude
and phase. However, in diffractive imaging, generally only magnitudes can be
directly measured while the phase needs to be estimated. In this work we
specifically consider ptychography, a sub-field of diffractive imaging, where
objects are reconstructed from multiple overlapping diffraction images. We
propose an augmentation of existing iterative phase retrieval algorithms with a
neural network designed for refining the result of each iteration. For this
purpose we adapt and extend a recently proposed architecture from the speech
processing field. Evaluation results show the proposed approach delivers
improved convergence rates in terms of both iteration count and algorithm
runtime.
- Abstract(参考訳): 回折イメージングの分野における最も顕著な課題の1つは位相検索(pr)問題である: 回折パターンから物体を再構築するためには、逆フーリエ変換を計算しなければならない。
これは全複素値回折データ、すなわち等級と位相を考えると可能である。
しかし、回折イメージングでは、一般的に、位相を見積もる必要がある間に直接等級だけを測定できる。
本研究では,複数重なり合った回折画像から物体を再構成する回折イメージングのサブフィールドであるptychographyについて考察する。
本稿では,既存の反復位相探索アルゴリズムをニューラルネットワークで拡張し,各繰り返しの結果を精査する手法を提案する。
この目的のために、最近提案されたアーキテクチャを音声処理分野から適応し拡張する。
評価結果から,提案手法は反復数とアルゴリズム実行時間の両方の観点から,収束率の向上を図っている。
関連論文リスト
- PtychoFormer: A Transformer-based Model for Ptychographic Phase Retrieval [9.425754476649796]
データ駆動単発写真位相検索のための階層型トランスフォーマーモデルを提案する。
本モデルでは, 細かな走査回折パターンに対する耐性を示し, 画像の再生速度は, 拡張された胸部反復エンジン (ePIE) の最大3600倍に向上した。
論文 参考訳(メタデータ) (2024-10-22T19:26:05Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - Single-shot Phase Retrieval from a Fractional Fourier Transform
Perspective [12.490990352972695]
分数フーリエ変換の観点から,新しい単発位相探索パラダイムを提案する。
FrFT領域の強度測定は位相検索のあいまいさを軽減するのに非常に有効である。
提案する自己教師型再構成手法は,FrFTの高速離散アルゴリズムを,未学習のニューラルネットワークの先行アルゴリズムと併用する。
論文 参考訳(メタデータ) (2023-11-18T03:11:31Z) - Exploring Invariance in Images through One-way Wave Equations [96.90549064390608]
本稿では,画像画像上の不等式が一方向の波動方程式と潜時速度の組を共有していることを実証的に明らかにする。
本稿では,各画像が対応する初期条件に符号化される直感的なエンコーダ・デコーダ・フレームワークを用いて実演する。
論文 参考訳(メタデータ) (2023-10-19T17:59:37Z) - PtychoDV: Vision Transformer-Based Deep Unrolling Network for
Ptychographic Image Reconstruction [12.780951605821238]
PtychoDVは、効率的で高品質な画像再構成のために設計された、新しいディープモデルベースのネットワークである。
シミュレーションデータの結果,PtychoDVは既存のディープラーニング手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-11T14:01:36Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
我々は,飽和画素を学習潜時マップでモデル化するデータ駆動型手法を開発した。
新しいモデルに基づいて、非盲検除色タスクを最大後部(MAP)問題に定式化することができる。
増幅されたアーティファクトを使わずに高品質な劣化画像を推定するために,我々は事前推定ネットワークを構築した。
論文 参考訳(メタデータ) (2023-08-10T12:53:30Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRMは、6Dポーズ改善のための新しいリカレントネットワークアーキテクチャである。
アーキテクチャにはLSTMユニットが組み込まれ、各改善ステップを通じて情報を伝達する。
DeepRMは、2つの広く受け入れられている課題データセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-28T16:18:08Z) - Classification and reconstruction of spatially overlapping phase images
using diffractive optical networks [0.0]
回折光学ネットワークは、光が入力から出力面に伝播するにつれて、波動光学と深層学習を統合し、所定の機械学習または計算画像タスクを全光学的に計算する。
タスク固有のトレーニングプロセスを通じて、拡散型ネットワークは、入力時にランダムに選択された空間的に重なり合った2つの異なる位相像を全光学的かつ同時に分類できることを示す。
重なり合う位相オブジェクトの完全な光学的分類に加えて、浅い電子ニューラルネットワークに基づく位相画像の再構成を実証する。
論文 参考訳(メタデータ) (2021-08-18T05:15:05Z) - TFill: Image Completion via a Transformer-Based Architecture [69.62228639870114]
画像補完を無方向性シーケンス対シーケンス予測タスクとして扱うことを提案する。
トークン表現には,小かつ重複しないRFを持つ制限型CNNを用いる。
第2フェーズでは、可視領域と発生領域の外観整合性を向上させるために、新しい注意認識層(aal)を導入する。
論文 参考訳(メタデータ) (2021-04-02T01:42:01Z) - End-to-end Interpretable Learning of Non-blind Image Deblurring [102.75982704671029]
非ブラインド画像のデブロワーリングは、通常、対応するシャープ画像の勾配に関する自然の先行によって正規化される線形最小二乗問題として定式化される。
本稿では,(既知の)ぼかしと自然像前のカーネルの逆フィルタを用いて,リチャードソン解法を事前条件として提案する。
論文 参考訳(メタデータ) (2020-07-03T15:45:01Z) - u-net CNN based fourier ptychography [5.46367622374939]
本稿では,畳み込みニューラルネットワークに基づく新しい検索アルゴリズムを提案する。
実験により, システム収差下において, 再現性が向上し, より堅牢であることが確認された。
論文 参考訳(メタデータ) (2020-03-16T22:48:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。