論文の概要: An explainable transformer circuit for compositional generalization
- arxiv url: http://arxiv.org/abs/2502.15801v1
- Date: Wed, 19 Feb 2025 02:30:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:59:30.005358
- Title: An explainable transformer circuit for compositional generalization
- Title(参考訳): 合成一般化のための説明可能な変圧器回路
- Authors: Cheng Tang, Brenden Lake, Mehrdad Jazayeri,
- Abstract要約: 小型変圧器における構成誘導の回路を同定し,機械的に解釈する。
因果解法を用いて回路を検証し,プログラムライクな記述を用いて動作を定式化する。
本研究は, 変圧器における複雑な挙動の理解を推し進め, モデル制御の直接的な経路を提供することができる。
- 参考スコア(独自算出の注目度): 4.446278061385101
- License:
- Abstract: Compositional generalization-the systematic combination of known components into novel structures-remains a core challenge in cognitive science and machine learning. Although transformer-based large language models can exhibit strong performance on certain compositional tasks, the underlying mechanisms driving these abilities remain opaque, calling into question their interpretability. In this work, we identify and mechanistically interpret the circuit responsible for compositional induction in a compact transformer. Using causal ablations, we validate the circuit and formalize its operation using a program-like description. We further demonstrate that this mechanistic understanding enables precise activation edits to steer the model's behavior predictably. Our findings advance the understanding of complex behaviors in transformers and highlight such insights can provide a direct pathway for model control.
- Abstract(参考訳): 構成一般化-既知のコンポーネントを新しい構造に体系的に組み合わせることは、認知科学と機械学習における中核的な課題として残されている。
変圧器をベースとした大規模言語モデルは、特定の構成タスクに対して強い性能を示すことができるが、これらの能力を動かす基盤となるメカニズムは不透明であり、その解釈可能性に疑問を呈している。
本研究では,小型変圧器における構成帰納回路の同定と機械的解釈を行う。
因果解法を用いて回路を検証し,プログラムライクな記述を用いて動作を定式化する。
さらに、この機械的理解により、正確なアクティベーション編集がモデルの振る舞いを予測可能とすることが実証された。
本研究は, 変圧器における複雑な挙動の理解を推し進め, モデル制御の直接的な経路を提供することができる。
関連論文リスト
- Enhancing Transformers for Generalizable First-Order Logical Entailment [51.04944136538266]
本稿では,変圧器のパラメータ化知識を用いた一階論理推論能力について検討する。
変圧器の1次推論能力は、その1次論理的推論を実行する能力を通じて評価される。
変換器における一階述語論理包含を一般化する能力を高めるため,より洗練された論理型アーキテクチャTEGAを提案する。
論文 参考訳(メタデータ) (2025-01-01T07:05:32Z) - Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
インコンテキスト学習により、GPTスタイルのトランスフォーマーは、重みを変更することなく推論中に一般化できる。
本稿では,ICLタスクとしてアフィンの再発を学習し,予測する能力に着目する。
実験的手法と理論的手法の両方を用いてモデルの内部動作を分析する。
論文 参考訳(メタデータ) (2024-10-22T21:30:01Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
中間学習によりトランスフォーマーの構造的帰納バイアスを強化することを提案する。
実験の結果,チャンキングなどの構文的タスクのわずかな学習に有効であることが確認された。
分析の結果,中間的事前学習は,どのトークンにシナティクス変換を適用する必要があるかを追尾する注意を喚起することが明らかとなった。
論文 参考訳(メタデータ) (2024-07-05T14:29:44Z) - A Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task [14.921790126851008]
合成推論タスクで訓練された変圧器の包括的力学解析について述べる。
モデルがタスクの解決に使用する解釈可能なメカニズムのセットを特定し,相関的および因果的証拠を用いた結果の検証を行った。
論文 参考訳(メタデータ) (2024-02-19T08:04:25Z) - Understanding the Expressive Power and Mechanisms of Transformer for Sequence Modeling [10.246977481606427]
ドット積自己注意などのトランスフォーマーの異なる成分が表現力に影響を及ぼすメカニズムについて検討する。
本研究では,トランスフォーマーにおける臨界パラメータの役割を明らかにする。
論文 参考訳(メタデータ) (2024-02-01T11:43:13Z) - How Do Transformers Learn In-Context Beyond Simple Functions? A Case
Study on Learning with Representations [98.7450564309923]
本稿では、より複雑なシナリオにおける文脈内学習(ICL)の理解を、表現を用いた学習で研究する。
合成文内学習問題を合成構造を用いて構築し、ラベルは複雑なが固定された表現関数によって入力に依存する。
理論的には、そのようなアルゴリズムを軽度な深さと大きさでほぼ実装するトランスフォーマーの存在を示す。
論文 参考訳(メタデータ) (2023-10-16T17:40:49Z) - What Makes for Good Tokenizers in Vision Transformer? [62.44987486771936]
変圧器は自己注意を用いて対関係を抽出することができる。
優れたトークンライザとなるものは、コンピュータビジョンではよく理解されていない。
Tokens (MoTo) を横断する変調は、正規化によるトークン間モデリング機能を備えている。
TokenPropの正規化対象は、標準トレーニング体制で採用されている。
論文 参考訳(メタデータ) (2022-12-21T15:51:43Z) - Systematic Generalization and Emergent Structures in Transformers
Trained on Structured Tasks [6.525090891505941]
我々は、因果変換器が、コピー、ソート、階層的な構成を含む一連のアルゴリズムタスクを実行する方法を示す。
両層変換器は多層問題に対する一般化可能な解法を学習し,系統的タスク分解の兆候を現示する。
これらの結果は、トランスフォーマーモデルが複雑な決定を再利用可能なマルチレベルポリシーに分解する方法について、重要な洞察を与えてくれる。
論文 参考訳(メタデータ) (2022-10-02T00:46:36Z) - On the Power of Saturated Transformers: A View from Circuit Complexity [87.20342701232869]
飽和変圧器はハードアテンション変圧器の限界を超越していることを示す。
硬度から飽和度へのジャンプは、変換器の有効回路深さを$O(log n)$の係数で増加させると解釈できる。
論文 参考訳(メタデータ) (2021-06-30T17:09:47Z) - A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries [44.36335714431731]
本稿では,回路上のモジュラー操作において,機械学習の複雑な推論シナリオがいかに表現できるかを示す。
文献におけるいくつかの結果を一般化し,新たな抽出可能な推論シナリオを開放する,抽出可能なモデルについて推論するための統一的な枠組みを導出する。
論文 参考訳(メタデータ) (2021-02-11T17:26:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。