論文の概要: Entropy-Lens: The Information Signature of Transformer Computations
- arxiv url: http://arxiv.org/abs/2502.16570v1
- Date: Sun, 23 Feb 2025 13:33:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:59:04.109351
- Title: Entropy-Lens: The Information Signature of Transformer Computations
- Title(参考訳): Entropy-Lens: Transformer Computationの情報署名
- Authors: Riccardo Ali, Francesco Caso, Christopher Irwin, Pietro Liò,
- Abstract要約: 本稿では,解凍型大規模変圧器のモデル非依存化フレームワークであるEntropy-Lensを紹介する。
この結果から, エントロピーに基づくメトリクスは, 現代のトランスフォーマーアーキテクチャの内部構造を明らかにするための基本的ツールとなる可能性が示唆された。
- 参考スコア(独自算出の注目度): 14.613982627206884
- License:
- Abstract: Transformer models have revolutionized fields from natural language processing to computer vision, yet their internal computational dynamics remain poorly understood raising concerns about predictability and robustness. In this work, we introduce Entropy-Lens, a scalable, model-agnostic framework that leverages information theory to interpret frozen, off-the-shelf large-scale transformers. By quantifying the evolution of Shannon entropy within intermediate residual streams, our approach extracts computational signatures that distinguish model families, categorize task-specific prompts, and correlate with output accuracy. We further demonstrate the generality of our method by extending the analysis to vision transformers. Our results suggest that entropy-based metrics can serve as a principled tool for unveiling the inner workings of modern transformer architectures.
- Abstract(参考訳): トランスフォーマーモデルは自然言語処理からコンピュータビジョンまで、分野に革命をもたらしたが、その内部の計算力学は予測可能性や堅牢性に関する懸念を生じさせるほど理解されていない。
本研究では,エントロピー・レンス(Entropy-Lens)について紹介する。エントロピー・レンス(Entropy-Lens)は,情報理論を応用し,既製の大規模変圧器を解釈するスケーラブルでモデルに依存しないフレームワークである。
中間残差ストリームにおけるシャノンエントロピーの進化を定量化することにより、モデルファミリを識別し、タスク固有のプロンプトを分類し、出力精度と相関する計算シグネチャを抽出する。
解析結果を視覚変換器に拡張することにより,本手法の汎用性をさらに実証する。
この結果から, エントロピーに基づくメトリクスは, 現代のトランスフォーマーアーキテクチャの内部構造を明らかにするための基本的ツールとなる可能性が示唆された。
関連論文リスト
- Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
インコンテキスト学習により、GPTスタイルのトランスフォーマーは、重みを変更することなく推論中に一般化できる。
本稿では,ICLタスクとしてアフィンの再発を学習し,予測する能力に着目する。
実験的手法と理論的手法の両方を用いてモデルの内部動作を分析する。
論文 参考訳(メタデータ) (2024-10-22T21:30:01Z) - A Unified Framework for Interpretable Transformers Using PDEs and Information Theory [3.4039202831583903]
本稿では、部分微分方程式(PDE)、ニューラルインフォメーションフロー理論、インフォメーション・ボトルネック理論を統合することでトランスフォーマーアーキテクチャを理解するための新しい統合理論フレームワークを提案する。
我々は、拡散、自己注意、非線形残留成分を含む連続的なPDEプロセスとしてトランスフォーマー情報力学をモデル化する。
画像およびテキストのモーダル性に関する包括的実験により、PDEモデルはトランスフォーマーの挙動の重要な側面を効果的に捉え、トランスフォーマーの注意分布と高い類似性(コサイン類似度 > 0.98)を達成することを示した。
論文 参考訳(メタデータ) (2024-08-18T16:16:57Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
中間学習によりトランスフォーマーの構造的帰納バイアスを強化することを提案する。
実験の結果,チャンキングなどの構文的タスクのわずかな学習に有効であることが確認された。
分析の結果,中間的事前学習は,どのトークンにシナティクス変換を適用する必要があるかを追尾する注意を喚起することが明らかとなった。
論文 参考訳(メタデータ) (2024-07-05T14:29:44Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
低ランク計算としての効率的な数値学習と推論アルゴリズムはトランスフォーマーに基づく適応学習に優れた性能を持つことを示す。
我々は、等級モデルが適応性を改善しながら一般化にどのように影響するかを分析する。
適切なマグニチュードベースのテストは,テストパフォーマンスに多少依存している,と結論付けています。
論文 参考訳(メタデータ) (2024-06-24T23:00:58Z) - Dynamical Mean-Field Theory of Self-Attention Neural Networks [0.0]
トランスフォーマーベースのモデルは、様々な領域で例外的な性能を示している。
動作方法や期待されるダイナミクスについてはほとんど分かっていない。
非平衡状態における非対称ホップフィールドネットワークの研究に手法を用いる。
論文 参考訳(メタデータ) (2024-06-11T13:29:34Z) - Understanding the Expressive Power and Mechanisms of Transformer for Sequence Modeling [10.246977481606427]
ドット積自己注意などのトランスフォーマーの異なる成分が表現力に影響を及ぼすメカニズムについて検討する。
本研究では,トランスフォーマーにおける臨界パラメータの役割を明らかにする。
論文 参考訳(メタデータ) (2024-02-01T11:43:13Z) - On the Convergence of Encoder-only Shallow Transformers [62.639819460956176]
エンコーダのみの浅部変圧器のグローバル収束理論を現実的な条件下で構築する。
我々の結果は、現代のトランスフォーマー、特にトレーニング力学の理解を深める道を開くことができる。
論文 参考訳(メタデータ) (2023-11-02T20:03:05Z) - BayesFormer: Transformer with Uncertainty Estimation [31.206243748162553]
ベイズ理論によって設計されたドロップアウトを持つトランスフォーマーモデルBayesFormerを紹介する。
我々は,言語モデリングと分類,長文理解,機械翻訳,能動的学習のための獲得機能など,ボード全体の改良点を示す。
論文 参考訳(メタデータ) (2022-06-02T01:54:58Z) - XAI for Transformers: Better Explanations through Conservative
Propagation [60.67748036747221]
変換器の勾配は局所的にのみ関数を反映しており、入力特徴の予測への寄与を確実に識別できないことを示す。
我々の提案は、よく確立されたLPP法のトランスフォーマーへの適切な拡張と見なすことができる。
論文 参考訳(メタデータ) (2022-02-15T10:47:11Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
畳み込みニューラルネットワークとトランスの両方の恩恵を受けるアーキテクチャであるTransDepthを提案します。
連続ラベルを含む画素単位での予測問題にトランスフォーマーを適用する最初の論文である。
論文 参考訳(メタデータ) (2021-03-22T18:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。