Generation of non-classical and entangled light states using intense laser-matter interactions
- URL: http://arxiv.org/abs/2410.17452v1
- Date: Tue, 22 Oct 2024 22:00:43 GMT
- Title: Generation of non-classical and entangled light states using intense laser-matter interactions
- Authors: Th. Lamprou, P. Stammer, J. Rivera-Dean, N. Tsatrafyllis, M. F. Ciappina, M. Lewenstein, P. Tzallas,
- Abstract summary: Non-classical and entangled light states are of fundamental interest in quantum mechanics.
We show how the use of fully quantized approaches in intense laser-matter interactions can lead to the generation high photon-number non-classical states.
We discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science.
- Score: 0.0
- License:
- Abstract: Non-classical and entangled light states are of fundamental interest in quantum mechanics and they are a powerful tool for the emergence of new quantum technologies. The development of methods that can lead to the generation of such light states is therefore of high importance. Recently, we have demonstrated that intense laser-matter interactions can serve towards this direction. Specifically, we have shown how the use of fully quantized approaches in intense laser-matter interactions and the process of high harmonic generation, can lead to the generation high photon-number non-classical (optical Schr\"{o}dinger's "cat" or squeezed) and entangled states from the far-infrared (IR) to the extreme-ultraviolet (XUV). Here, after a brief introduction on the fundamentals, we summarize the operation principles of these approaches and we discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science. Our findings open the way to a novel quantum nonlinear spectroscopy method, based on the interplay between the quantum properties of light with that of quantum matter.
Related papers
- Strong laser physics, non-classical light states and quantum information
science [0.0]
The link between strong laser physics, quantum optics, and quantum information science has been developed in the recent past.
We report on the recent progress in the fully quantized description of intense laser--matter interaction.
Also, we discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science.
arXiv Detail & Related papers (2023-02-09T15:20:19Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Quantum electrodynamics of intense laser-matter interactions: A tool for
quantum state engineering [0.1465840097113565]
We provide a comprehensive fully quantized description of intense laser-atom interactions.
We elaborate on the processes of high harmonic generation, above-threshold-ionization.
We discuss new phenomena that cannot be revealed within the context of semi-classical theories.
arXiv Detail & Related papers (2022-06-09T07:07:30Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Theory of entanglement and measurement in high harmonic generation [0.0]
We introduce the notion of quantum information theory to intense laser driven processes.
We provide the quantum mechanical description of measurement protocols for high harmonic generation in atoms.
This allows to conceive new protocols for quantum state engineering of light.
arXiv Detail & Related papers (2022-03-08T19:24:32Z) - High photon number entangled states and coherent state superposition
from the extreme-ultraviolet to the far infrared [0.0]
We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions.
It is found that all field modes involved in the high harmonic generation process are entangled, and upon performing a quantum operation, leads to the generation of high photon number optical cat states.
These states can be considered as a new resource for fundamental tests of quantum theory, quantum information processing or sensing with non-classical states of light.
arXiv Detail & Related papers (2021-07-27T15:40:23Z) - Quantum-Optical Spectrometry in Relativistic Laser-Plasma Interactions
Using the High-Harmonic Generation Process: A Proposal [0.0]
Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method.
It has been used to reveal the quantum optical nature of intense laser-matter interactions.
The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser-field interaction product.
arXiv Detail & Related papers (2021-06-01T10:30:39Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Metasurfaces for Quantum Photonics [62.997667081978825]
Development of metasurfaces allowed to replace bulky optical assemblies with thin nanostructured films.
Recent progress in the field of quantum-photonics applications of metasurfaces.
arXiv Detail & Related papers (2020-07-29T10:14:43Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.