論文の概要: Interpretable Multimodal Machine Learning Analysis of X-ray Absorption Near-Edge Spectra and Pair Distribution Functions
- arxiv url: http://arxiv.org/abs/2410.17467v2
- Date: Thu, 20 Feb 2025 22:39:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 17:21:07.604143
- Title: Interpretable Multimodal Machine Learning Analysis of X-ray Absorption Near-Edge Spectra and Pair Distribution Functions
- Title(参考訳): X線吸収近縁スペクトルとペア分布関数の解釈可能なマルチモーダル機械学習解析
- Authors: Tanaporn Na Narong, Zoe N. Zachko, Steven B. Torrisi, Simon J. L. Billinge,
- Abstract要約: X線近縁スペクトル (XANES) と原子対分布関数 (PDFs) を組み合わせて, 遷移金属カチオンの局所構造と化学的環境を抽出する。
XANESのみのモデルは概してPDFのみのモデルよりも優れており、構造的なタスクでも優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We used interpretable machine learning to combine information from multiple heterogeneous spectra: X-ray absorption near-edge spectra (XANES) and atomic pair distribution functions (PDFs) to extract local structural and chemical environments of transition metal cations in oxides. Random forest models were trained on simulated XANES, PDF, and both combined to extract oxidation state, coordination number, and mean nearest-neighbor bond length. XANES-only models generally outperformed PDF-only models, even for structural tasks, although using the metal's differential PDFs (dPDFs) instead of total PDFs narrowed this gap. When combined with PDFs, information from XANES often dominates the prediction. Our results demonstrate that XANES contain rich structural information and highlight the utility of species-specificity. This interpretable, multimodal approach is quick to implement with suitable databases and offers valuable insights into the relative strengths of different modalities, guiding researchers in experiment design and identifying when combining complementary techniques adds meaningful information to a scientific investigation.
- Abstract(参考訳): X線吸収近縁スペクトル (XANES) と原子対分布関数 (PDFs) を組み合わせて, 遷移金属カチオンの局所構造と化学的環境を抽出した。
XANES, PDF, および両者を併用し, 酸化状態, 配位数, 平均近傍結合長を推定した。
XANESのみのモデルは概してPDFのみのモデルよりも優れていたが、金属の差分PDF(dPDF)を使用することで差は狭まった。
PDFと組み合わせると、XANESからの情報が予測を支配していることが多い。
以上の結果から,XANESには豊富な構造情報が含まれており,種特異性の有用性が注目されている。
この解釈可能なマルチモーダルアプローチは、適切なデータベースですばやく実装でき、異なるモダリティの相対的な強さに関する貴重な洞察を提供する。
関連論文リスト
- CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
スペクトルイメージングは、医療や都市景観の理解など、様々な領域で有望な応用を提供する。
スペクトルカメラのチャネル次元と捕獲波長のばらつきは、AI駆動方式の開発を妨げる。
我々は、$textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$のモデルである$textbfCARL$を紹介した。
論文 参考訳(メタデータ) (2025-04-27T13:06:40Z) - A Unified MDL-based Binning and Tensor Factorization Framework for PDF Estimation [16.147973439788856]
多変量確率密度関数推定のための新しい非パラメトリックアプローチを提案する(PDF)。
提案手法は, 共役確率テンソルの正準多進分解(CPD)を利用するテンソル分解法に基づく。
我々は,本手法が合成データおよび実生豆分類データセットに与える影響を実証した。
論文 参考訳(メタデータ) (2025-04-25T20:27:04Z) - A new framework for X-ray absorption spectroscopy data analysis based on machine learning: XASDAML [3.26781102547109]
XASDAMLは、データ処理ワークフロー全体を統合したフレキシブルな機械学習ベースのフレームワークである。
包括的統計分析をサポートし、主成分分析やクラスタリングなどの手法を活用する。
XASDAMLの汎用性と有効性は、銅のデータセットに適用することで実証される。
論文 参考訳(メタデータ) (2025-02-23T17:50:04Z) - DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra [60.39311767532607]
DiffMSは式制限エンコーダ-デコーダ生成ネットワークである。
我々は、潜伏埋め込みと分子構造を橋渡しする頑健なデコーダを開発する。
実験の結果、DiffMS は $textitde novo$ 分子生成で既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2025-02-13T18:29:48Z) - Conditional Distribution Quantization in Machine Learning [83.54039134248231]
条件予測 mathbbE(Y Mid X) はしばしば、マルチモーダル条件分布の複雑さを捉えることに失敗する(Y Mid X)
我々はn点条件量子化(n-point Conditional Quantizations)-勾配降下により学習可能なXの関数写像--近似数学L(Y mid X)-を提案する。
論文 参考訳(メタデータ) (2025-02-11T00:28:24Z) - A Universal Deep Learning Framework for Materials X-ray Absorption Spectra [0.6291443816903801]
X線吸収分光法(XAS)は、吸収する原子の局所的な化学的環境を調べるための強力な特徴付け技術である。
我々は、XAS予測のための一連の伝達学習アプローチを含むフレームワークを提案し、それぞれが精度と効率の向上に寄与する。
提案手法は,XASモデリングのスループットを第1原理シミュレーションに比べて桁違いに向上させ,より広い範囲の要素に対するXAS予測に拡張可能である。
論文 参考訳(メタデータ) (2024-09-29T04:41:10Z) - Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
マルチモーダルプレトレーニング DEL-Fusion Model (MPDF)
我々は,異なる複合表現とそれらのテキスト記述の対比対象を適用した事前学習タスクを開発する。
本稿では, 原子, 分子, 分子レベルでの複合情報をアマルガメートする新しいDEL融合フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-07T17:32:21Z) - Universal Spectral Transfer with Physical Prior-Informed Deep Generative Learning [9.603403541272746]
本稿では、スペクトルシグネチャを生成するための新しい物理的事前情報深層生成モデルであるSpectroGenを紹介する。
結果,99%の相関と0.01の根平均二乗誤差が得られた基底真理スペクトルよりも優れた分解能を示した。
論文 参考訳(メタデータ) (2024-07-22T23:31:10Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
クロスモーダル検索手法は、共通表現空間を共同学習することにより、視覚と言語モダリティの類似性関係を構築する。
しかし、この予測は、低品質なデータ、例えば、腐敗した画像、速いペースの動画、詳細でないテキストによって引き起こされるアレタリック不確実性のために、しばしば信頼性が低い。
本稿では, 原型に基づくAleatoric Uncertainity Quantification (PAU) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:41:19Z) - Robust retrieval of material chemical states in X-ray microspectroscopy [10.621361408885765]
本稿では,X線顕微鏡のための新しいデータ定式化モデルを提案する。
我々のフレームワークは、複雑で不均一なサンプルの化学状態を、挑戦的な条件下であっても正確に識別し、特徴付けることができる。
論文 参考訳(メタデータ) (2023-08-08T12:17:02Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Decoding Structure-Spectrum Relationships with Physically Organized
Latent Spaces [6.36075035468233]
構造スペクトル関係の発見のための半教師付き機械学習手法を開発し,実証した。
本手法は,個々の構造記述子とスペクトル傾向の1対1マッピングを構成する。
RankAAE法は連続的かつ解釈可能な潜在空間を生成し、各次元は個々の構造記述子を追跡することができる。
論文 参考訳(メタデータ) (2023-01-11T21:30:22Z) - A probabilistic deep learning approach to automate the interpretation of
multi-phase diffraction spectra [4.240899165468488]
シミュレーション回折スペクトルで訓練されたアンサンブル畳み込みニューラルネットワークを開発し、複素多相混合を同定する。
シミュレーションおよび実験的に測定された回折スペクトルをベンチマークし, これまでに報告した手法よりも精度が優れていることを示す。
論文 参考訳(メタデータ) (2021-03-30T20:13:01Z) - Alchemy: A structured task distribution for meta-reinforcement learning [52.75769317355963]
本稿では,構造的リッチネスと構造的透明性を組み合わせたメタRL研究のための新しいベンチマークを提案する。
Alchemyは3Dビデオゲームで、エピソードからエピソードまで手続き的に再サンプリングされる潜伏した因果構造を含んでいる。
本稿では,アルケミーの強力なRL剤について検討し,その1つについて詳細な分析を行った。
論文 参考訳(メタデータ) (2021-02-04T23:40:44Z) - Shared Space Transfer Learning for analyzing multi-site fMRI data [83.41324371491774]
マルチボクセルパターン解析(MVPA)は、タスクベース機能磁気共鳴画像(fMRI)データから予測モデルを学習する。
MVPAはよく設計された機能セットと十分なサンプルサイズで機能する。
ほとんどのfMRIデータセットはノイズが多く、高次元で、収集するのに高価で、サンプルサイズも小さい。
本稿では,新しい伝達学習手法として共有空間移動学習(SSTL)を提案する。
論文 参考訳(メタデータ) (2020-10-24T08:50:26Z) - Spectral Analysis Network for Deep Representation Learning and Image
Clustering [53.415803942270685]
本稿ではスペクトル分析に基づく教師なし深層表現学習のための新しいネットワーク構造を提案する。
パッチレベルで画像間の局所的な類似性を識別できるため、閉塞に対してより堅牢である。
クラスタリングに親しみやすい表現を学習し、データサンプル間の深い相関を明らかにすることができる。
論文 参考訳(メタデータ) (2020-09-11T05:07:15Z) - Exact representations of many body interactions with RBM neural networks [77.34726150561087]
我々は、RBMの表現力を利用して、多体接触相互作用を1体演算子に正確に分解する。
この構成は、ハバードモデルでよく知られたヒルシュの変換を、核物理学におけるピオンレスFTのようなより複雑な理論に一般化する。
論文 参考訳(メタデータ) (2020-05-07T15:59:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。