AdaptoML-UX: An Adaptive User-centered GUI-based AutoML Toolkit for Non-AI Experts and HCI Researchers
- URL: http://arxiv.org/abs/2410.17469v1
- Date: Tue, 22 Oct 2024 22:52:14 GMT
- Title: AdaptoML-UX: An Adaptive User-centered GUI-based AutoML Toolkit for Non-AI Experts and HCI Researchers
- Authors: Amr Gomaa, Michael Sargious, Antonio Krüger,
- Abstract summary: We introduce AdaptoML-UX, an adaptive framework that incorporates automated feature engineering, machine learning, and incremental learning.
Our toolkit demonstrates the capability to adapt efficiently to diverse problem domains and datasets.
It supports model personalization through incremental learning, customizing models to individual user behaviors.
- Score: 19.602247178319992
- License:
- Abstract: The increasing integration of machine learning across various domains has underscored the necessity for accessible systems that non-experts can utilize effectively. To address this need, the field of automated machine learning (AutoML) has developed tools to simplify the construction and optimization of ML pipelines. However, existing AutoML solutions often lack efficiency in creating online pipelines and ease of use for Human-Computer Interaction (HCI) applications. Therefore, in this paper, we introduce AdaptoML-UX, an adaptive framework that incorporates automated feature engineering, machine learning, and incremental learning to assist non-AI experts in developing robust, user-centered ML models. Our toolkit demonstrates the capability to adapt efficiently to diverse problem domains and datasets, particularly in HCI, thereby reducing the necessity for manual experimentation and conserving time and resources. Furthermore, it supports model personalization through incremental learning, customizing models to individual user behaviors. HCI researchers can employ AdaptoML-UX (\url{https://github.com/MichaelSargious/AdaptoML_UX}) without requiring specialized expertise, as it automates the selection of algorithms, feature engineering, and hyperparameter tuning based on the unique characteristics of the data.
Related papers
- Towards a Domain-Specific Modelling Environment for Reinforcement Learning [0.13124513975412253]
We use model-driven engineering (MDE) methods and tools for developing a domain-specific modelling environment.
We targeted reinforcement learning from the machine learning domain, and evaluated the proposed language, reinforcement learning modelling language (RLML)
The tool supports syntax-directed editing, constraint checking, and automatic generation of code from RLML models.
arXiv Detail & Related papers (2024-10-12T04:56:01Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - Democratize with Care: The need for fairness specific features in
user-interface based open source AutoML tools [0.0]
Automated Machine Learning (AutoML) streamlines the machine learning model development process.
This democratization allows more users (including non-experts) to access and utilize state-of-the-art machine-learning expertise.
However, AutoML tools may also propagate bias in the way these tools handle the data, model choices, and optimization approaches adopted.
arXiv Detail & Related papers (2023-12-16T19:54:00Z) - AutoML-GPT: Large Language Model for AutoML [5.9145212342776805]
We have established a framework called AutoML-GPT that integrates a comprehensive set of tools and libraries.
Through a conversational interface, users can specify their requirements, constraints, and evaluation metrics.
We have demonstrated that AutoML-GPT significantly reduces the time and effort required for machine learning tasks.
arXiv Detail & Related papers (2023-09-03T09:39:49Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
We propose developing task-oriented prompts and automatically utilizing large language models (LLMs) to automate the training pipeline.
We present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyper parameters.
This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas.
arXiv Detail & Related papers (2023-05-04T02:09:43Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Resource-Aware Pareto-Optimal Automated Machine Learning Platform [1.6746303554275583]
novel platform Resource-Aware AutoML (RA-AutoML)
RA-AutoML enables flexible and generalized algorithms to build machine learning models subjected to multiple objectives.
arXiv Detail & Related papers (2020-10-30T19:37:48Z) - Evolution of Scikit-Learn Pipelines with Dynamic Structured Grammatical
Evolution [1.5224436211478214]
This paper describes a novel grammar-based framework that adapts Dynamic Structured Grammatical Evolution (DSGE) to the evolution of Scikit-Learn classification pipelines.
The experimental results include comparing AutoML-DSGE to another grammar-based AutoML framework, Resilient ClassificationPipeline Evolution (RECIPE)
arXiv Detail & Related papers (2020-04-01T09:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.