Selective continuous-variable quantum process tomography
- URL: http://arxiv.org/abs/2410.17516v1
- Date: Wed, 23 Oct 2024 02:49:32 GMT
- Title: Selective continuous-variable quantum process tomography
- Authors: Virginia Feldman, Ariel Bendersky,
- Abstract summary: We present a protocol for selective continuous-variable quantum process tomography.
We show how the protocol can be used to partially reconstruct on a region a continuous-variable quantum process, alongside numerical simulations.
- Score: 0.0
- License:
- Abstract: Quantum process tomography is a useful tool for characterizing quantum processes. This task is essential for the development of different areas, such as quantum information processing. We present a protocol for selective continuous-variable quantum process tomography. Our proposal allows to selectively estimate any element of an unknown continuous-variable quantum process in the position representation, without requiring the complete reconstruction of the process. By resorting to controlled squeezing and translation operations, and adaptatively discretizing the process, a direct measure of an estimate of any process element can be obtained. Furthermore, we show how the protocol can be used to partially reconstruct on a region a continuous-variable quantum process, alongside numerical simulations.
Related papers
- Selective quantum state tomography for continuous-variable systems [0.0]
We present a protocol that allows the estimation of any density matrix element for continuous-variable quantum states.
The algorithm adaptatively discretizes the state and then, by resorting to controlled squeezing and translation operations, measures the density matrix element value.
arXiv Detail & Related papers (2024-09-24T17:05:16Z) - Fourier Quantum Process Tomography [0.0]
We introduce a new technique, referred to as Fourier Quantum Process Tomography, which requires a reduced number of measurements.
We experimentally test the technique on different space-dependent polarization transformations, reporting average fidelities higher than 90%.
arXiv Detail & Related papers (2023-12-20T22:17:56Z) - Reliable confidence regions for quantum tomography using distribution moments [0.0]
We suggest a computationally efficient and reliable scheme for determining well-justified error bars for quantum tomography.
We benchmark our approach for a number of quantum tomography protocols using both simulation and demonstration with the use of a cloud-accessible quantum processor.
arXiv Detail & Related papers (2023-07-24T14:21:35Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Gradient-descent quantum process tomography by learning Kraus operators [63.69764116066747]
We perform quantum process tomography (QPT) for both discrete- and continuous-variable quantum systems.
We use a constrained gradient-descent (GD) approach on the so-called Stiefel manifold during optimization to obtain the Kraus operators.
The GD-QPT matches the performance of both compressed-sensing (CS) and projected least-squares (PLS) QPT in benchmarks with two-qubit random processes.
arXiv Detail & Related papers (2022-08-01T12:48:48Z) - Selective and efficient quantum process tomography for non-trace
preserving maps: a superconducting quantum processor implementation [0.0]
We describe a general type of quantum process that does not preserve the trace of the input quantum state.
We show that with the aid of it a priori information on the losses structure of the quantum channel, the reconstruction can be adapted to reconstruct the non-trace-preserving map.
Our results show that it is possible to efficiently reconstruct non trace-preserving processes, with high precision, and with significantly higher fidelity than when the process is assumed to be trace-preserving.
arXiv Detail & Related papers (2022-05-20T22:36:16Z) - Quantum Causal Unravelling [44.356294905844834]
We develop the first efficient method for unravelling the causal structure of the interactions in a multipartite quantum process.
Our algorithms can be used to identify processes that can be characterized efficiently with the technique of quantum process tomography.
arXiv Detail & Related papers (2021-09-27T16:28:06Z) - Learning Temporal Quantum Tomography [0.0]
Quantifying and verifying the control level in preparing a quantum state are central challenges in building quantum devices.
We develop a practical and approximate tomography method using a recurrent machine learning framework.
We demonstrate our algorithms for quantum learning tasks followed by the proposal of a quantum short-term memory capacity to evaluate the temporal processing ability of near-term quantum devices.
arXiv Detail & Related papers (2021-03-25T17:01:24Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.