論文の概要: MM-Eval: A Multilingual Meta-Evaluation Benchmark for LLM-as-a-Judge and Reward Models
- arxiv url: http://arxiv.org/abs/2410.17578v1
- Date: Wed, 23 Oct 2024 06:04:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:22.860963
- Title: MM-Eval: A Multilingual Meta-Evaluation Benchmark for LLM-as-a-Judge and Reward Models
- Title(参考訳): MM-Eval: LLM-as-a-JudgeとRewardモデルのための多言語メタ評価ベンチマーク
- Authors: Guijin Son, Dongkeun Yoon, Juyoung Suk, Javier Aula-Blasco, Mano Aslan, Vu Trong Kim, Shayekh Bin Islam, Jaume Prats-Cristià, Lucía Tormo-Bañuelos, Seungone Kim,
- Abstract要約: 大型言語モデル(LLM)は、人間の好みや判断のプロキシとして機能するタスクの評価器として一般的に用いられる。
既存のベンチマークは主に英語に重点を置いており、非英語の文脈における評価者としてのLLMの有効性についての限られた洞察を提供している。
MM-Evalは6つのカテゴリにまたがる18言語をカバーする多言語メタ評価ベンチマークである。
- 参考スコア(独自算出の注目度): 3.961168847961322
- License:
- Abstract: Large language models (LLMs) are commonly used as evaluators in tasks (e.g., reward modeling, LLM-as-a-judge), where they act as proxies for human preferences or judgments. This leads to the need for meta-evaluation: evaluating the credibility of LLMs as evaluators. However, existing benchmarks primarily focus on English, offering limited insight into LLMs' effectiveness as evaluators in non-English contexts. To address this, we introduce MM-Eval, a multilingual meta-evaluation benchmark that covers 18 languages across six categories. MM-Eval evaluates various dimensions, including language-specific challenges like linguistics and language hallucinations. Evaluation results show that both proprietary and open-source language models have considerable room for improvement. Further analysis reveals a tendency for these models to assign middle-ground scores to low-resource languages. We publicly release our benchmark and code.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人間の好みや判断のプロキシとして機能するタスク(例えば報酬モデリング、LSM-as-a-judge)における評価として一般的に用いられる。
これによりメタ評価の必要性が生まれ、LCMの信頼性を評価対象として評価する。
しかし、既存のベンチマークは主に英語に焦点を当てており、非英語の文脈における評価者としてのLLMの有効性について限定的な洞察を提供する。
MM-Evalは6つのカテゴリにまたがる18言語をカバーする多言語メタ評価ベンチマークである。
MM-Evalは言語学や言語幻覚といった言語固有の課題を含む様々な側面を評価している。
評価の結果、プロプライエタリ言語モデルとオープンソース言語モデルの両方に改善の余地があることが示されている。
さらなる分析により、これらのモデルが低リソース言語にミドルグラウンドスコアを割り当てる傾向が明らかになる。
ベンチマークとコードを公開しています。
関連論文リスト
- Cross-Lingual Auto Evaluation for Assessing Multilingual LLMs [36.30321941154582]
Herculeは、英語で利用可能な参照回答に基づいて、応答にスコアを割り当てることを学ぶ言語間評価モデルである。
本研究は,LLMを用いた言語横断評価の総合的研究であり,多言語評価のためのスケーラブルで効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-17T09:45:32Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - Quantifying Multilingual Performance of Large Language Models Across Languages [48.40607157158246]
大規模言語モデル(LLM)は、英語、ドイツ語、フランス語のような高リソース言語で、低リソース言語の能力は依然として不十分である。
内部表現を用いたLLM性能に基づいて,言語をベンチマークし,ランク付けするための固有測度であるLanguage Rankerを提案する。
分析の結果,高リソース言語は英語との類似度が高く,性能が優れ,低リソース言語は類似度が低いことがわかった。
論文 参考訳(メタデータ) (2024-04-17T16:53:16Z) - METAL: Towards Multilingual Meta-Evaluation [12.852595634767901]
本研究では,多言語シナリオにおいて,Large Language Models (LLMs) を評価対象としてエンド・ツー・エンド評価を行うためのフレームワークを提案する。
要約作業のための母国語話者判定を含む10言語を対象としたデータセットを作成する。
GPT-3.5-Turbo, GPT-4, PaLM2を用いたLCM評価器の性能の比較を行った。
論文 参考訳(メタデータ) (2024-04-02T06:14:54Z) - OMGEval: An Open Multilingual Generative Evaluation Benchmark for Large
Language Models [59.54423478596468]
OMGEvalは、オープンソースの多言語生成テストセットであり、異なる言語におけるLLMの能力を評価することができる。
各言語について、OMGEvalは804のオープンエンド質問を提供し、LLMの重要な機能を幅広くカバーしている。
具体的には、OMGEvalの現在のバージョンには5つの言語(Zh, Ru, Fr, Es, Ar)が含まれている。
論文 参考訳(メタデータ) (2024-02-21T04:42:41Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
エージェント・ディベート支援型メタ評価フレームワークであるScaleEvalを提案する。
フレームワークのコードをGitHubで公開しています。
論文 参考訳(メタデータ) (2024-01-30T07:03:32Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - Are Large Language Model-based Evaluators the Solution to Scaling Up
Multilingual Evaluation? [20.476500441734427]
大規模言語モデル(LLM)は様々な自然言語処理(NLP)タスクに優れる。
彼らの評価、特に上位20ドルを超える言語では、既存のベンチマークとメトリクスの制限のため、依然として不十分である。
論文 参考訳(メタデータ) (2023-09-14T06:41:58Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
大規模言語モデル(LLM)は自動要約を約束しているが、その成功の背景にある理由はよく分かっていない。
LLMのゼロショット要約能力の鍵は、モデルサイズではなく、命令チューニングにある。
論文 参考訳(メタデータ) (2023-01-31T18:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。