Topology meets Machine Learning: An Introduction using the Euler Characteristic Transform
- URL: http://arxiv.org/abs/2410.17760v1
- Date: Wed, 23 Oct 2024 10:56:05 GMT
- Title: Topology meets Machine Learning: An Introduction using the Euler Characteristic Transform
- Authors: Bastian Rieck,
- Abstract summary: I present use cases that result in more efficient models for analyzing point clouds, graphs, and meshes.
I outline a vision for how topological concepts could be used in the future, comprising (1) the learning of functions on topological spaces, (2) the building of hybrid models that imbue neural networks with knowledge about the topological information in data, and (3) the analysis of qualitative properties of neural networks.
- Score: 16.077163205806713
- License:
- Abstract: This overview article makes the case for how topological concepts can enrich research in machine learning. Using the Euler Characteristic Transform (ECT), a geometrical-topological invariant, as a running example, I present different use cases that result in more efficient models for analyzing point clouds, graphs, and meshes. Moreover, I outline a vision for how topological concepts could be used in the future, comprising (1) the learning of functions on topological spaces, (2) the building of hybrid models that imbue neural networks with knowledge about the topological information in data, and (3) the analysis of qualitative properties of neural networks. With current research already addressing some of these aspects, this article thus serves as an introduction and invitation to this nascent area of research.
Related papers
- Topological Representational Similarity Analysis in Brains and Beyond [15.417809900388262]
This thesis introduces Topological RSA (tRSA), a novel framework combining geometric and topological properties of neural representations.
tRSA applies nonlinear monotonic transforms to representational dissimilarities, emphasizing local topology while retaining intermediate-scale geometry.
The resulting geo-topological matrices enable model comparisons robust to noise and individual idiosyncrasies.
arXiv Detail & Related papers (2024-08-21T19:02:00Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and
Applications [67.33002207179923]
This paper presents a survey of data structures, models, and applications related to geometric GNNs.
We provide a unified view of existing models from the geometric message passing perspective.
We also summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation.
arXiv Detail & Related papers (2024-03-01T12:13:04Z) - Topological Data Analysis for Neural Network Analysis: A Comprehensive
Survey [35.29334376503123]
This survey provides a comprehensive exploration of applications of Topological Data Analysis (TDA) within neural network analysis.
We discuss different strategies to obtain topological information from data and neural networks by means of TDA.
We explore practical implications of deep learning, specifically focusing on areas like adversarial detection and model selection.
arXiv Detail & Related papers (2023-12-10T09:50:57Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.
The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.
This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - Synthetic Data Generation and Deep Learning for the Topological Analysis
of 3D Data [0.0]
This research uses deep learning to estimate the topology of sparse, unordered point cloud scenes in 3D.
The experimental results of this pilot study support the hypothesis that, with the aid of sophisticated synthetic data generation, neural networks can perform segmentation-based topological data analysis.
arXiv Detail & Related papers (2023-09-29T04:37:35Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Rethinking Persistent Homology for Visual Recognition [27.625893409863295]
This paper performs a detailed analysis of the effectiveness of topological properties for image classification in various training scenarios.
We identify the scenarios that benefit the most from topological features, e.g., training simple networks on small datasets.
arXiv Detail & Related papers (2022-07-09T08:01:11Z) - Topology and geometry of data manifold in deep learning [0.0]
This article describes and substantiates the geometric and topological view of the learning process of neural networks.
We present a wide range of experiments on different datasets and different configurations of convolutional neural network architectures.
Our work is a contribution to the development of an important area of explainable and interpretable AI through the example of computer vision.
arXiv Detail & Related papers (2022-04-19T02:57:47Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.