Topology and geometry of data manifold in deep learning
- URL: http://arxiv.org/abs/2204.08624v1
- Date: Tue, 19 Apr 2022 02:57:47 GMT
- Title: Topology and geometry of data manifold in deep learning
- Authors: German Magai, Anton Ayzenberg
- Abstract summary: This article describes and substantiates the geometric and topological view of the learning process of neural networks.
We present a wide range of experiments on different datasets and different configurations of convolutional neural network architectures.
Our work is a contribution to the development of an important area of explainable and interpretable AI through the example of computer vision.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant advances in the field of deep learning in applications to
various fields, explaining the inner processes of deep learning models remains
an important and open question. The purpose of this article is to describe and
substantiate the geometric and topological view of the learning process of
neural networks. Our attention is focused on the internal representation of
neural networks and on the dynamics of changes in the topology and geometry of
the data manifold on different layers. We also propose a method for assessing
the generalizing ability of neural networks based on topological descriptors.
In this paper, we use the concepts of topological data analysis and intrinsic
dimension, and we present a wide range of experiments on different datasets and
different configurations of convolutional neural network architectures. In
addition, we consider the issue of the geometry of adversarial attacks in the
classification task and spoofing attacks on face recognition systems. Our work
is a contribution to the development of an important area of explainable and
interpretable AI through the example of computer vision.
Related papers
- A singular Riemannian Geometry Approach to Deep Neural Networks III. Piecewise Differentiable Layers and Random Walks on $n$-dimensional Classes [49.32130498861987]
We study the case of non-differentiable activation functions, such as ReLU.
Two recent works introduced a geometric framework to study neural networks.
We illustrate our findings with some numerical experiments on classification of images and thermodynamic problems.
arXiv Detail & Related papers (2024-04-09T08:11:46Z) - Probing Biological and Artificial Neural Networks with Task-dependent
Neural Manifolds [12.037840490243603]
We investigate the internal mechanisms of neural networks through the lens of neural population geometry.
We quantitatively characterize how different learning objectives lead to differences in the organizational strategies of these models.
These analyses present a strong direction for bridging mechanistic and normative theories in neural networks through neural population geometry.
arXiv Detail & Related papers (2023-12-21T20:40:51Z) - Topological Data Analysis for Neural Network Analysis: A Comprehensive
Survey [35.29334376503123]
This survey provides a comprehensive exploration of applications of Topological Data Analysis (TDA) within neural network analysis.
We discuss different strategies to obtain topological information from data and neural networks by means of TDA.
We explore practical implications of deep learning, specifically focusing on areas like adversarial detection and model selection.
arXiv Detail & Related papers (2023-12-10T09:50:57Z) - Deep neural networks architectures from the perspective of manifold
learning [0.0]
This paper is a comprehensive comparison and description of neural network architectures in terms of ge-ometry and topology.
We focus on the internal representation of neural networks and on the dynamics of changes in the topology and geometry of a data manifold on different layers.
arXiv Detail & Related papers (2023-06-06T04:57:39Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
Topological data analysis provides compact, noise-robust representations of complex structures.
Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture.
In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification.
arXiv Detail & Related papers (2022-12-01T02:05:44Z) - Tensor Methods in Computer Vision and Deep Learning [120.3881619902096]
tensors, or multidimensional arrays, are data structures that can naturally represent visual data of multiple dimensions.
With the advent of the deep learning paradigm shift in computer vision, tensors have become even more fundamental.
This article provides an in-depth and practical review of tensors and tensor methods in the context of representation learning and deep learning.
arXiv Detail & Related papers (2021-07-07T18:42:45Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Neural population geometry: An approach for understanding biological and
artificial neural networks [3.4809730725241605]
We review examples of geometrical approaches providing insight into the function of biological and artificial neural networks.
Neural population geometry has the potential to unify our understanding of structure and function in biological and artificial neural networks.
arXiv Detail & Related papers (2021-04-14T18:10:34Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
We introduce a flexible setup allowing for a neural network to learn both its size and topology during the course of a gradient-based training.
The resulting network has the structure of a graph tailored to the particular learning task and dataset.
arXiv Detail & Related papers (2020-06-22T12:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.