GenUDC: High Quality 3D Mesh Generation with Unsigned Dual Contouring Representation
- URL: http://arxiv.org/abs/2410.17802v1
- Date: Wed, 23 Oct 2024 11:59:49 GMT
- Title: GenUDC: High Quality 3D Mesh Generation with Unsigned Dual Contouring Representation
- Authors: Ruowei Wang, Jiaqi Li, Dan Zeng, Xueqi Ma, Zixiang Xu, Jianwei Zhang, Qijun Zhao,
- Abstract summary: 3D generative models generate high-quality meshes with complex structures and realistic surfaces.
We propose the GenUDC framework to address these challenges by leveraging the Unsigned Dual Contouring (UDC) as the mesh representation.
In addition, GenUDC adopts a two-stage, coarse-to-fine generative process for 3D mesh generation.
- Score: 13.923644541595893
- License:
- Abstract: Generating high-quality meshes with complex structures and realistic surfaces is the primary goal of 3D generative models. Existing methods typically employ sequence data or deformable tetrahedral grids for mesh generation. However, sequence-based methods have difficulty producing complex structures with many faces due to memory limits. The deformable tetrahedral grid-based method MeshDiffusion fails to recover realistic surfaces due to the inherent ambiguity in deformable grids. We propose the GenUDC framework to address these challenges by leveraging the Unsigned Dual Contouring (UDC) as the mesh representation. UDC discretizes a mesh in a regular grid and divides it into the face and vertex parts, recovering both complex structures and fine details. As a result, the one-to-one mapping between UDC and mesh resolves the ambiguity problem. In addition, GenUDC adopts a two-stage, coarse-to-fine generative process for 3D mesh generation. It first generates the face part as a rough shape and then the vertex part to craft a detailed shape. Extensive evaluations demonstrate the superiority of UDC as a mesh representation and the favorable performance of GenUDC in mesh generation. The code and trained models are available at https://github.com/TrepangCat/GenUDC.
Related papers
- MeshAnything V2: Artist-Created Mesh Generation With Adjacent Mesh Tokenization [65.15226276553891]
MeshAnything V2 is an advanced mesh generation model designed to create Artist-Created Meshes.
A key innovation behind MeshAnything V2 is our novel Adjacent Mesh Tokenization (AMT) method.
arXiv Detail & Related papers (2024-08-05T15:33:45Z) - MeshXL: Neural Coordinate Field for Generative 3D Foundation Models [51.1972329762843]
We present a family of generative pre-trained auto-regressive models, which addresses the process of 3D mesh generation with modern large language model approaches.
MeshXL is able to generate high-quality 3D meshes, and can also serve as foundation models for various down-stream applications.
arXiv Detail & Related papers (2024-05-31T14:35:35Z) - PivotMesh: Generic 3D Mesh Generation via Pivot Vertices Guidance [66.40153183581894]
We introduce a generic and scalable mesh generation framework PivotMesh.
PivotMesh makes an initial attempt to extend the native mesh generation to large-scale datasets.
We show that PivotMesh can generate compact and sharp 3D meshes across various categories.
arXiv Detail & Related papers (2024-05-27T07:13:13Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
arXiv Detail & Related papers (2022-08-04T14:13:35Z) - Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D
Shape Synthesis [90.26556260531707]
DMTet is a conditional generative model that can synthesize high-resolution 3D shapes using simple user guides such as coarse voxels.
Unlike deep 3D generative models that directly generate explicit representations such as meshes, our model can synthesize shapes with arbitrary topology.
arXiv Detail & Related papers (2021-11-08T05:29:35Z) - Subdivision-Based Mesh Convolution Networks [38.09613983540932]
Convolutional neural networks (CNNs) have made great breakthroughs in 2D computer vision.
This paper introduces a novel CNN framework, named SubdivNet, for 3D triangle meshes with Loop subdivision sequence connectivity.
Experiments on mesh classification, segmentation, correspondence, and retrieval from the real-world demonstrate the effectiveness and efficiency of SubdivNet.
arXiv Detail & Related papers (2021-06-04T06:50:34Z) - DualConv: Dual Mesh Convolutional Networks for Shape Correspondence [44.94765770516059]
Convolutional neural networks have been extremely successful for 2D images and are readily extended to handle 3D voxel data.
In this paper we explore how these networks can be extended to the dual face-based representation of triangular meshes.
Our experiments demonstrate that building additionally convolutional models that explicitly leverage the neighborhood size regularity of dual meshes enables learning shape representations that perform on par or better than previous approaches.
arXiv Detail & Related papers (2021-03-23T11:22:47Z) - Learning Deformable Tetrahedral Meshes for 3D Reconstruction [78.0514377738632]
3D shape representations that accommodate learning-based 3D reconstruction are an open problem in machine learning and computer graphics.
Previous work on neural 3D reconstruction demonstrated benefits, but also limitations, of point cloud, voxel, surface mesh, and implicit function representations.
We introduce Deformable Tetrahedral Meshes (DefTet) as a particular parameterization that utilizes volumetric tetrahedral meshes for the reconstruction problem.
arXiv Detail & Related papers (2020-11-03T02:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.