Retrieving snow depth distribution by downscaling ERA5 Reanalysis with ICESat-2 laser altimetry
- URL: http://arxiv.org/abs/2410.17934v1
- Date: Wed, 23 Oct 2024 14:59:06 GMT
- Title: Retrieving snow depth distribution by downscaling ERA5 Reanalysis with ICESat-2 laser altimetry
- Authors: Zhihao Liu, Simon Filhol, Désirée Treichler,
- Abstract summary: This study uses snow depth measurements from the ICESat-2 satellite laser altimeter to produce snow depth maps at microscale (10 m)
A regression model is fitted to establish a relationship between the retrieved snow depth and the corresponding ERA5 Land snow depth.
The method can provide timeseries of monthly snow depth maps for the entire ERA5 time range (since 1950)
- Score: 2.5124917269950324
- License:
- Abstract: Estimating the variability of seasonal snow cover, in particular snow depth in remote areas, poses significant challenges due to limited spatial and temporal data availability. This study uses snow depth measurements from the ICESat-2 satellite laser altimeter, which are sparse in both space and time, and incorporates them with climate reanalysis data into a downscaling-calibration scheme to produce monthly gridded snow depth maps at microscale (10 m). Snow surface elevation measurements from ICESat-2 along profiles are compared to a digital elevation model to determine snow depth at each point. To efficiently turn sparse measurements into snow depth maps, a regression model is fitted to establish a relationship between the retrieved snow depth and the corresponding ERA5 Land snow depth. This relationship, referred to as subgrid variability, is then applied to downscale the monthly ERA5 Land snow depth data. The method can provide timeseries of monthly snow depth maps for the entire ERA5 time range (since 1950). The validation of downscaled snow depth data was performed at an intermediate scale (100 m x 500 m) using datasets from airborne laser scanning (ALS) in the Hardangervidda region of southern Norway. Results show that snow depth prediction achieved R2 values ranging from 0.74 to 0.88 (post-calibration). The method relies on globally available data and is applicable to other snow regions above the treeline. Though requiring area-specific calibration, our approach has the potential to provide snow depth maps in areas where no such data exist and can be used to extrapolate existing snow surveys in time and over larger areas. With this, it can offer valuable input data for hydrological, ecological or permafrost modeling tasks.
Related papers
- Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Accuracy and Consistency of Space-based Vegetation Height Maps for
Forest Dynamics in Alpine Terrain [18.23260742076316]
The Swiss National Forest Inventory (NFI) provides countrywide vegetation height maps at a spatial resolution of 0.5 m.
This can be improved by using spaceborne remote sensing and deep learning to generate large-scale vegetation height maps.
We generate annual, countrywide vegetation height maps at a 10-meter ground sampling distance for the years 2017 to 2020 based on Sentinel-2 satellite imagery.
arXiv Detail & Related papers (2023-09-04T20:23:57Z) - Prediction of Annual Snow Accumulation Using a Recurrent Graph
Convolutional Approach [0.38073142980732994]
In recent years, airborne radar sensors, such as the Snow Radar, have been shown to be able to measure internal ice layers over large areas with a fine vertical resolution.
In this work, we experiment with a graph attention network-based model and used it to predict more annual snow accumulation data points with fewer input data points on a larger dataset.
arXiv Detail & Related papers (2023-06-22T19:48:34Z) - An Autoencoder-based Snow Drought Index [0.0]
We propose Snow Drought Response Index or SnoDRI, a novel indicator that could be used to identify and quantify snow drought occurrences.
Our index is calculated using cutting-edge ML algorithms from various snow-related variables.
We use reanalysis data (NLDAS-2) from 1981 to 2021 for the Pacific United States to study the efficacy of the new snow drought index.
arXiv Detail & Related papers (2023-05-23T03:41:45Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
We present a new vision transformer (ViT) model optimized with a classification (discrete) and a continuous loss function.
This model achieves better accuracy than previously used convolutional based approaches (ConvNets) optimized with only a continuous loss function.
arXiv Detail & Related papers (2023-04-22T22:39:03Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Recurrent Graph Convolutional Networks for Spatiotemporal Prediction of
Snow Accumulation Using Airborne Radar [0.38073142980732994]
We propose a machine learning model based on recurrent graph convolutional networks to predict the snow accumulation in recent consecutive years at a certain location.
We found that the model performs better and with more consistency than equivalent nongeometric and nontemporal models.
arXiv Detail & Related papers (2023-02-02T01:40:48Z) - LiDAR Snowfall Simulation for Robust 3D Object Detection [116.10039516404743]
We propose a physically based method to simulate the effect of snowfall on real clear-weather LiDAR point clouds.
Our method samples snow particles in 2D space for each LiDAR line and uses the induced geometry to modify the measurement for each LiDAR beam.
We use our simulation to generate partially synthetic snowy LiDAR data and leverage these data for training 3D object detection models that are robust to snowfall.
arXiv Detail & Related papers (2022-03-28T21:48:26Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
We propose a Bayesian deep learning approach to densely estimate forest structure variables at country-scale with 10-meter resolution.
Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic aperture radar images into maps of five different forest structure variables.
We train and test our model on reference data from 41 airborne laser scanning missions across Norway.
arXiv Detail & Related papers (2021-11-25T16:21:28Z) - EarthNet2021: A novel large-scale dataset and challenge for forecasting
localized climate impacts [12.795776149170978]
Large Earth observation datasets now enable us to create machine learning models capable of translating coarse weather information into high-resolution Earth surface forecasts.
We define high-resolution Earth surface forecasting as video prediction of satellite imagery conditional on mesoscale weather forecasts.
We introduce EarthNet 2021, a new curated dataset containing target-temporal Sentinel 2 satellite imagery at 20 m resolution, matched with high-resolution topography and mesoscale (1.28 km) weather variables.
arXiv Detail & Related papers (2020-12-11T11:21:00Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.