DynamicCity: Large-Scale LiDAR Generation from Dynamic Scenes
- URL: http://arxiv.org/abs/2410.18084v1
- Date: Wed, 23 Oct 2024 17:59:58 GMT
- Title: DynamicCity: Large-Scale LiDAR Generation from Dynamic Scenes
- Authors: Hengwei Bian, Lingdong Kong, Haozhe Xie, Liang Pan, Yu Qiao, Ziwei Liu,
- Abstract summary: We introduce DynamicCity, a novel 4D LiDAR generation framework capable of generating large-scale, high-quality LiDAR scenes.
In particular, DynamicCity employs a novel Projection Module to effectively compress 4D LiDAR features into six 2D feature maps for HexPlane construction.
In particular, a Padded Rollout Operation is proposed to reorganize all six feature planes of the HexPlane as a squared 2D feature map.
- Score: 61.07023022220073
- License:
- Abstract: LiDAR scene generation has been developing rapidly recently. However, existing methods primarily focus on generating static and single-frame scenes, overlooking the inherently dynamic nature of real-world driving environments. In this work, we introduce DynamicCity, a novel 4D LiDAR generation framework capable of generating large-scale, high-quality LiDAR scenes that capture the temporal evolution of dynamic environments. DynamicCity mainly consists of two key models. 1) A VAE model for learning HexPlane as the compact 4D representation. Instead of using naive averaging operations, DynamicCity employs a novel Projection Module to effectively compress 4D LiDAR features into six 2D feature maps for HexPlane construction, which significantly enhances HexPlane fitting quality (up to 12.56 mIoU gain). Furthermore, we utilize an Expansion & Squeeze Strategy to reconstruct 3D feature volumes in parallel, which improves both network training efficiency and reconstruction accuracy than naively querying each 3D point (up to 7.05 mIoU gain, 2.06x training speedup, and 70.84% memory reduction). 2) A DiT-based diffusion model for HexPlane generation. To make HexPlane feasible for DiT generation, a Padded Rollout Operation is proposed to reorganize all six feature planes of the HexPlane as a squared 2D feature map. In particular, various conditions could be introduced in the diffusion or sampling process, supporting versatile 4D generation applications, such as trajectory- and command-driven generation, inpainting, and layout-conditioned generation. Extensive experiments on the CarlaSC and Waymo datasets demonstrate that DynamicCity significantly outperforms existing state-of-the-art 4D LiDAR generation methods across multiple metrics. The code will be released to facilitate future research.
Related papers
- DaRePlane: Direction-aware Representations for Dynamic Scene Reconstruction [26.39519157164198]
We present DaRePlane, a novel representation approach that captures dynamics from six different directions.
DaRePlane yields state-of-the-art performance in novel view synthesis for various complex dynamic scenes.
arXiv Detail & Related papers (2024-10-18T04:19:10Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
We present a novel framework, textbfDiffusion4D, for efficient and scalable 4D content generation.
We develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets.
Our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency.
arXiv Detail & Related papers (2024-05-26T17:47:34Z) - SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer [57.506654943449796]
We propose an efficient, sparse-controlled video-to-4D framework named SC4D that decouples motion and appearance.
Our method surpasses existing methods in both quality and efficiency.
We devise a novel application that seamlessly transfers motion onto a diverse array of 4D entities.
arXiv Detail & Related papers (2024-04-04T18:05:18Z) - LidarDM: Generative LiDAR Simulation in a Generated World [21.343346521878864]
LidarDM is a novel LiDAR generative model capable of producing realistic, layout-aware, physically plausible, and temporally coherent LiDAR videos.
We employ latent diffusion models to generate the 3D scene, combine it with dynamic actors to form the underlying 4D world, and subsequently produce realistic sensory observations within this virtual environment.
Our experiments indicate that our approach outperforms competing algorithms in realism, temporal coherency, and layout consistency.
arXiv Detail & Related papers (2024-04-03T17:59:28Z) - DreamGaussian4D: Generative 4D Gaussian Splatting [56.49043443452339]
We introduce DreamGaussian4D (DG4D), an efficient 4D generation framework that builds on Gaussian Splatting (GS)
Our key insight is that combining explicit modeling of spatial transformations with static GS makes an efficient and powerful representation for 4D generation.
Video generation methods have the potential to offer valuable spatial-temporal priors, enhancing the high-quality 4D generation.
arXiv Detail & Related papers (2023-12-28T17:16:44Z) - 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering [103.32717396287751]
We propose 4D Gaussian Splatting (4D-GS) as a holistic representation for dynamic scenes.
A neuralvoxel encoding algorithm inspired by HexPlane is proposed to efficiently build features from 4D neural voxels.
Our 4D-GS method achieves real-time rendering under high resolutions, 82 FPS at an 800$times$800 resolution on an 3090 GPU.
arXiv Detail & Related papers (2023-10-12T17:21:41Z) - LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models [1.1965844936801797]
Generative modeling of 3D LiDAR data is an emerging task with promising applications for autonomous mobile robots.
We present R2DM, a novel generative model for LiDAR data that can generate diverse and high-fidelity 3D scene point clouds.
Our method is built upon denoising diffusion probabilistic models (DDPMs), which have shown impressive results among generative model frameworks.
arXiv Detail & Related papers (2023-09-17T12:26:57Z) - HexPlane: A Fast Representation for Dynamic Scenes [18.276921637560445]
We show that dynamic 3D scenes can be explicitly represented by six planes of learned features, leading to an elegant solution we call HexPlane.
A HexPlane computes features for points in spacetime by fusing vectors extracted from each plane, which is highly efficient.
arXiv Detail & Related papers (2023-01-23T18:59:25Z) - LiDAR-based 4D Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
We propose the Dynamic Shifting Network (DS-Net), which serves as an effective panoptic segmentation framework in the point cloud realm.
Our proposed DS-Net achieves superior accuracies over current state-of-the-art methods in both tasks.
We extend DS-Net to 4D panoptic LiDAR segmentation by the temporally unified instance clustering on aligned LiDAR frames.
arXiv Detail & Related papers (2022-03-14T15:25:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.