Liver Cancer Knowledge Graph Construction based on dynamic entity replacement and masking strategies RoBERTa-BiLSTM-CRF model
- URL: http://arxiv.org/abs/2410.18090v1
- Date: Tue, 08 Oct 2024 07:57:29 GMT
- Title: Liver Cancer Knowledge Graph Construction based on dynamic entity replacement and masking strategies RoBERTa-BiLSTM-CRF model
- Authors: YiChi Zhang, HaiLing Wang, YongBin Gao, XiaoJun Hu, YingFang Fan, ZhiJun Fang,
- Abstract summary: Liver cancer ranks as the fifth most common malignant tumor and the second most fatal in our country.
Early diagnosis is crucial, necessitating that physicians identify liver cancer in patients at the earliest possible stage.
- Score: 12.467967838229452
- License:
- Abstract: Background: Liver cancer ranks as the fifth most common malignant tumor and the second most fatal in our country. Early diagnosis is crucial, necessitating that physicians identify liver cancer in patients at the earliest possible stage. However, the diagnostic process is complex and demanding. Physicians must analyze a broad spectrum of patient data, encompassing physical condition, symptoms, medical history, and results from various examinations and tests, recorded in both structured and unstructured medical formats. This results in a significant workload for healthcare professionals. In response, integrating knowledge graph technology to develop a liver cancer knowledge graph-assisted diagnosis and treatment system aligns with national efforts toward smart healthcare. Such a system promises to mitigate the challenges faced by physicians in diagnosing and treating liver cancer. Methods: This paper addresses the major challenges in building a knowledge graph for hepatocellular carcinoma diagnosis, such as the discrepancy between public data sources and real electronic medical records, the effective integration of which remains a key issue. The knowledge graph construction process consists of six steps: conceptual layer design, data preprocessing, entity identification, entity normalization, knowledge fusion, and graph visualization. A novel Dynamic Entity Replacement and Masking Strategy (DERM) for named entity recognition is proposed. Results: A knowledge graph for liver cancer was established, including 7 entity types such as disease, symptom, and constitution, containing 1495 entities. The recognition accuracy of the model was 93.23%, the recall was 94.69%, and the F1 score was 93.96%.
Related papers
- Cancer-Answer: Empowering Cancer Care with Advanced Large Language Models [0.0]
Gastrointestinal (GI) tract cancers account for a substantial portion of the global cancer burden.
Cancer-related queries are crucial for timely diagnosis, treatment, and patient education.
We leverage large language models (LLMs) such as GPT-3.5 Turbo to generate accurate, contextually relevant responses to cancer-related queries.
arXiv Detail & Related papers (2024-11-11T12:54:22Z) - FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKI not only preserves data privacy but also enhances the capability of medical foundation models.
FEDMEKI allows medical foundation models to learn from a broader spectrum of medical knowledge without direct data exposure.
arXiv Detail & Related papers (2024-08-17T15:18:56Z) - Expanding the Medical Decathlon dataset: segmentation of colon and colorectal cancer from computed tomography images [0.0]
Colorectal cancer is the third-most common cancer in the Western Hemisphere.
The segmentation of colorectal and colorectal cancer by computed tomography is an urgent problem in medicine.
This paper presents an extension of the Medical Decathlon dataset with colorectal markups in order to improve the quality of segmentation algorithms.
arXiv Detail & Related papers (2024-07-31T10:36:41Z) - Exploring Explainable AI Techniques for Improved Interpretability in Lung and Colon Cancer Classification [0.0]
Lung and colon cancer are serious worldwide health challenges that require early and precise identification to reduce mortality risks.
Histopathology remains the gold standard, although time-consuming and vulnerable to inter-observer mistakes.
Recent advances in deep learning have generated interest in its application to medical imaging analysis.
arXiv Detail & Related papers (2024-05-07T18:49:34Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Automated Huntington's Disease Prognosis via Biomedical Signals and
Shallow Machine Learning [0.0]
We used a premade, certified dataset collected at a clinic with 27 HD positive patients, 36 controls, and 6 unknowns with electroencephalography, electrocardiography, and functional near-infrared spectroscopy data.
We found the highest accuracy was achieved by a scaled-out Extremely Randomized Trees algorithm, with area under the curve of the receiver operator characteristic of 0.963 and accuracy of 91.353%.
arXiv Detail & Related papers (2023-02-04T02:20:46Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue
Generation [150.52617238140868]
We propose low-resource medical dialogue generation to transfer the diagnostic experience from source diseases to target ones.
We also develop a Graph-Evolving Meta-Learning framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease.
arXiv Detail & Related papers (2020-12-22T13:20:23Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
We propose a fully-automated and multi-stage liver tumor characterization framework for dynamic contrast computed tomography (CT)
Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization.
arXiv Detail & Related papers (2020-06-28T19:55:34Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
Disease diagnosis on chest X-ray images is a challenging multi-label classification task.
We propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases.
Our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning.
arXiv Detail & Related papers (2020-02-26T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.