CoReEcho: Continuous Representation Learning for 2D+time Echocardiography Analysis
- URL: http://arxiv.org/abs/2403.10164v2
- Date: Mon, 16 Sep 2024 12:42:47 GMT
- Title: CoReEcho: Continuous Representation Learning for 2D+time Echocardiography Analysis
- Authors: Fadillah Adamsyah Maani, Numan Saeed, Aleksandr Matsun, Mohammad Yaqub,
- Abstract summary: We propose CoReEcho, a novel training framework emphasizing continuous representations tailored for direct EF regression.
CoReEcho: 1) outperforms the current state-of-the-art (SOTA) on the largest echocardiography dataset (EchoNet-Dynamic) with MAE of 3.90 & R2 of 82.44, and 2) provides robust and generalizable features that transfer more effectively in related downstream tasks.
- Score: 42.810247034149214
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning (DL) models have been advancing automatic medical image analysis on various modalities, including echocardiography, by offering a comprehensive end-to-end training pipeline. This approach enables DL models to regress ejection fraction (EF) directly from 2D+time echocardiograms, resulting in superior performance. However, the end-to-end training pipeline makes the learned representations less explainable. The representations may also fail to capture the continuous relation among echocardiogram clips, indicating the existence of spurious correlations, which can negatively affect the generalization. To mitigate this issue, we propose CoReEcho, a novel training framework emphasizing continuous representations tailored for direct EF regression. Our extensive experiments demonstrate that CoReEcho: 1) outperforms the current state-of-the-art (SOTA) on the largest echocardiography dataset (EchoNet-Dynamic) with MAE of 3.90 & R2 of 82.44, and 2) provides robust and generalizable features that transfer more effectively in related downstream tasks. The code is publicly available at https://github.com/fadamsyah/CoReEcho.
Related papers
- EchoTracker: Advancing Myocardial Point Tracking in Echocardiography [0.6263680699548959]
EchoTracker is a two-fold coarse-to-fine model that facilitates the tracking of queried points on a tissue surface across ultrasound image sequences.
Experiments demonstrate that the model outperforms SOTA methods, with an average position accuracy of 67% and a median trajectory error of 2.86 pixels.
This implies that learning-based point tracking can potentially improve performance and yield a higher diagnostic and prognostic value for clinical measurements.
arXiv Detail & Related papers (2024-05-14T13:24:51Z) - Interpretable Multimodal Learning for Cardiovascular Hemodynamics Assessment [5.854275745400326]
Pulmonary Arterial Wedge Pressure (PAWP) is an essential marker to detect heart failure.
In this paper, we propose a multimodal learning pipeline to predict PAWP marker.
arXiv Detail & Related papers (2024-04-06T19:42:25Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
Existing video-based methods do not pay much attention to the left ventricular region, nor the left ventricular changes caused by motion.
We propose a semi-supervised auxiliary learning paradigm with a left ventricular segmentation task, which contributes to the representation learning for the left ventricular region.
Our approach achieves state-of-the-art performance on the Stanford dataset with an improvement of 0.22 MAE, 0.26 RMSE, and 1.9% $R2$.
arXiv Detail & Related papers (2023-10-09T05:57:01Z) - SimLVSeg: Simplifying Left Ventricular Segmentation in 2D+Time Echocardiograms with Self- and Weakly-Supervised Learning [0.8672882547905405]
We develop SimLVSeg, a video-based network for consistent left ventricular (LV) segmentation from sparsely annotated echocardiogram videos.
SimLVSeg consists of self-supervised pre-training with temporal masking, followed by weakly supervised learning tailored for LV segmentation from sparse annotations.
We demonstrate how SimLVSeg outperforms the state-of-the-art solutions by achieving a 93.32% dice score on the largest 2D+time echocardiography dataset.
arXiv Detail & Related papers (2023-09-30T18:13:41Z) - Intensity Profile Projection: A Framework for Continuous-Time
Representation Learning for Dynamic Networks [50.2033914945157]
We present a representation learning framework, Intensity Profile Projection, for continuous-time dynamic network data.
The framework consists of three stages: estimating pairwise intensity functions, learning a projection which minimises a notion of intensity reconstruction error.
Moreoever, we develop estimation theory providing tight control on the error of any estimated trajectory, indicating that the representations could even be used in quite noise-sensitive follow-on analyses.
arXiv Detail & Related papers (2023-06-09T15:38:25Z) - Extraction of volumetric indices from echocardiography: which deep
learning solution for clinical use? [6.144041824426555]
We show that the proposed 3D nnU-Net outperforms alternative 2D and recurrent segmentation methods.
Overall, the experimental results suggest that with sufficient training data, 3D nnU-Net could become the first automated tool to meet the standards of an everyday clinical device.
arXiv Detail & Related papers (2023-05-03T09:38:52Z) - Counterfactual Intervention Feature Transfer for Visible-Infrared Person
Re-identification [69.45543438974963]
We find graph-based methods in the visible-infrared person re-identification task (VI-ReID) suffer from bad generalization because of two issues.
The well-trained input features weaken the learning of graph topology, making it not generalized enough during the inference process.
We propose a Counterfactual Intervention Feature Transfer (CIFT) method to tackle these problems.
arXiv Detail & Related papers (2022-08-01T16:15:31Z) - Learning to segment with limited annotations: Self-supervised
pretraining with regression and contrastive loss in MRI [1.419070105368302]
We consider two pre-training approaches for driving a deep learning model to learn different representations.
The effect of pretraining techniques is evaluated in two downstream segmentation applications using Magnetic Resonance (MR) images.
We observed that DL models pretrained using self-supervision can be finetuned for comparable performance with fewer labeled datasets.
arXiv Detail & Related papers (2022-05-26T02:23:14Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching [76.4844593082362]
We investigate the reason why existing end-to-end networks perform poorly in challenging conditions and establish a strong baseline for remote HR measurement with architecture search (NAS)
Comprehensive experiments are performed on three benchmark datasets on both intra-temporal and cross-dataset testing.
arXiv Detail & Related papers (2020-04-26T05:43:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.