EB-GAME: A Game-Changer in ECG Heartbeat Anomaly Detection
- URL: http://arxiv.org/abs/2404.15333v1
- Date: Mon, 8 Apr 2024 13:01:59 GMT
- Title: EB-GAME: A Game-Changer in ECG Heartbeat Anomaly Detection
- Authors: JuneYoung Park, Da Young Kim, Yunsoo Kim, Jisu Yoo, Tae Joon Kim,
- Abstract summary: This paper focuses on detecting abnormal signals in electrocardi-ograms (ECGs) using only labels from normal signals as training data.
In-spired by self-supervised vision transformers, which learn by dividing images into patches, and masked auto-encoders, we introduce the ECG Heartbeat Anomaly Detection model, EB-GAME.
- Score: 7.574088346030774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiologists use electrocardiograms (ECG) for the detection of arrhythmias. However, continuous monitoring of ECG signals to detect cardiac abnormal-ities requires significant time and human resources. As a result, several deep learning studies have been conducted in advance for the automatic detection of arrhythmia. These models show relatively high performance in supervised learning, but are not applicable in cases with few training examples. This is because abnormal ECG data is scarce compared to normal data in most real-world clinical settings. Therefore, in this study, GAN-based anomaly detec-tion, i.e., unsupervised learning, was employed to address the issue of data imbalance. This paper focuses on detecting abnormal signals in electrocardi-ograms (ECGs) using only labels from normal signals as training data. In-spired by self-supervised vision transformers, which learn by dividing images into patches, and masked auto-encoders, known for their effectiveness in patch reconstruction and solving information redundancy, we introduce the ECG Heartbeat Anomaly Detection model, EB-GAME. EB-GAME was trained and validated on the MIT-BIH Arrhythmia Dataset, where it achieved state-of-the-art performance on this benchmark.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - TSRNet: Simple Framework for Real-time ECG Anomaly Detection with
Multimodal Time and Spectrogram Restoration Network [9.770923451320938]
We propose an approach that leverages anomaly detection to identify unhealthy conditions using solely normal ECG data for training.
We introduce a specialized network called the Multimodal Time and Spectrogram Restoration Network (TSRNet) designed specifically for detecting anomalies in ECG signals.
arXiv Detail & Related papers (2023-12-15T20:27:38Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
We propose a two-level hierarchical deep learning framework with Generative Adversarial Network (GAN) for automatic diagnosis of ECG signals.
The first-level model is composed of a Memory-Augmented Deep auto-Encoder with GAN, which aims to differentiate abnormal signals from normal ECGs for anomaly detection.
The second-level learning aims at robust multi-class classification for different arrhythmias identification.
arXiv Detail & Related papers (2022-10-19T12:29:05Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm.
A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested.
arXiv Detail & Related papers (2022-08-29T05:01:04Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
A task-oriented self-supervised learning approach is proposed to train a more effective anomaly detector.
A specific two branch convolutional neural network with larger kernels is designed as the feature extractor.
The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs.
arXiv Detail & Related papers (2022-07-04T13:15:08Z) - Blind ECG Restoration by Operational Cycle-GANs [15.264145425539128]
Continuous long-term monitoring of electrocardiography signals is crucial for the early detection of cardiac abnormalities such as arrhythmia.
Non-clinical ECG recordings often suffer from severe artifacts such as baseline wander, signal cuts, motion artifacts, variations on QRS amplitude, noise, and other interferences.
We propose a novel approach for blind ECG restoration using cycle-consistent generative adversarial networks (Cycle-GANs)
arXiv Detail & Related papers (2022-01-29T19:47:17Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
We propose Attention-Based Convolutional Neural Networks (ABCNN) to work on the raw ECG signals and automatically extract the informative dependencies for accurate arrhythmia detection.
Our main task is to find the arrhythmia from normal heartbeats and, at the meantime, accurately recognize the heart diseases from five arrhythmia types.
The experimental results show that the proposed ABCNN outperforms the widely used baselines.
arXiv Detail & Related papers (2021-08-18T14:55:46Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.