Advancing NLP Security by Leveraging LLMs as Adversarial Engines
- URL: http://arxiv.org/abs/2410.18215v1
- Date: Wed, 23 Oct 2024 18:32:03 GMT
- Title: Advancing NLP Security by Leveraging LLMs as Adversarial Engines
- Authors: Sudarshan Srinivasan, Maria Mahbub, Amir Sadovnik,
- Abstract summary: We propose a novel approach to advancing NLP security by leveraging Large Language Models (LLMs) as engines for generating diverse adversarial attacks.
We argue for expanding this concept to encompass a broader range of attack types, including adversarial patches, universal perturbations, and targeted attacks.
This paradigm shift in adversarial NLP has far-reaching implications, potentially enhancing model robustness, uncovering new vulnerabilities, and driving innovation in defense mechanisms.
- Score: 3.7238716667962084
- License:
- Abstract: This position paper proposes a novel approach to advancing NLP security by leveraging Large Language Models (LLMs) as engines for generating diverse adversarial attacks. Building upon recent work demonstrating LLMs' effectiveness in creating word-level adversarial examples, we argue for expanding this concept to encompass a broader range of attack types, including adversarial patches, universal perturbations, and targeted attacks. We posit that LLMs' sophisticated language understanding and generation capabilities can produce more effective, semantically coherent, and human-like adversarial examples across various domains and classifier architectures. This paradigm shift in adversarial NLP has far-reaching implications, potentially enhancing model robustness, uncovering new vulnerabilities, and driving innovation in defense mechanisms. By exploring this new frontier, we aim to contribute to the development of more secure, reliable, and trustworthy NLP systems for critical applications.
Related papers
- Recent advancements in LLM Red-Teaming: Techniques, Defenses, and Ethical Considerations [0.0]
Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language processing tasks, but their vulnerability to jailbreak attacks poses significant security risks.
This survey paper presents a comprehensive analysis of recent advancements in attack strategies and defense mechanisms within the field of Large Language Model (LLM) red-teaming.
arXiv Detail & Related papers (2024-10-09T01:35:38Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
Large Language Models (LLMs) are vulnerable to adversarial threats.
This paper presents an innovative defensive strategy, given white box access to an LLM.
We apply a novel methodology for analyzing distinctive activation patterns in the residual streams for attack prompt classification.
arXiv Detail & Related papers (2024-06-05T13:06:33Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe deployment of large language models.
We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks.
We propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts.
arXiv Detail & Related papers (2024-05-28T19:16:17Z) - Assessing Adversarial Robustness of Large Language Models: An Empirical Study [24.271839264950387]
Large Language Models (LLMs) have revolutionized natural language processing, but their robustness against adversarial attacks remains a critical concern.
We present a novel white-box style attack approach that exposes vulnerabilities in leading open-source LLMs, including Llama, OPT, and T5.
arXiv Detail & Related papers (2024-05-04T22:00:28Z) - Adversarial Attacks and Defense for Conversation Entailment Task [0.49157446832511503]
Large language models are vulnerable to low-cost adversarial attacks.
We fine-tune a transformer model to accurately discern the truthfulness of hypotheses.
We introduce an embedding perturbation loss method to bolster the model's robustness.
arXiv Detail & Related papers (2024-05-01T02:49:18Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - Breaking Down the Defenses: A Comparative Survey of Attacks on Large Language Models [18.624280305864804]
Large Language Models (LLMs) have become a cornerstone in the field of Natural Language Processing (NLP)
This paper presents a comprehensive survey of the various forms of attacks targeting LLMs.
We delve into topics such as adversarial attacks that aim to manipulate model outputs, data poisoning that affects model training, and privacy concerns related to training data exploitation.
arXiv Detail & Related papers (2024-03-03T04:46:21Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
Recent work shows that text moderations can produce jailbreaking prompts that bypass defenses.
We look at three types of defenses: detection (perplexity based), input preprocessing (paraphrase and retokenization), and adversarial training.
We find that the weakness of existing discretes for text, combined with the relatively high costs of optimization, makes standard adaptive attacks more challenging for LLMs.
arXiv Detail & Related papers (2023-09-01T17:59:44Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
We show that the continuous and high-dimensional nature of the visual input makes it a weak link against adversarial attacks.
We exploit visual adversarial examples to circumvent the safety guardrail of aligned LLMs with integrated vision.
Our study underscores the escalating adversarial risks associated with the pursuit of multimodality.
arXiv Detail & Related papers (2023-06-22T22:13:03Z) - Trojaning Language Models for Fun and Profit [53.45727748224679]
TROJAN-LM is a new class of trojaning attacks in which maliciously crafted LMs trigger host NLP systems to malfunction.
By empirically studying three state-of-the-art LMs in a range of security-critical NLP tasks, we demonstrate that TROJAN-LM possesses the following properties.
arXiv Detail & Related papers (2020-08-01T18:22:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.