Enforcing Cybersecurity Constraints for LLM-driven Robot Agents for Online Transactions
- URL: http://arxiv.org/abs/2503.15546v1
- Date: Mon, 17 Mar 2025 01:01:10 GMT
- Title: Enforcing Cybersecurity Constraints for LLM-driven Robot Agents for Online Transactions
- Authors: Shraddha Pradipbhai Shah, Aditya Vilas Deshpande,
- Abstract summary: The integration of Large Language Models (LLMs) into autonomous robotic agents for conducting online transactions poses significant cybersecurity challenges.<n>This study aims to enforce robust cybersecurity constraints to mitigate the risks associated with data breaches, transaction fraud, and system manipulation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Large Language Models (LLMs) into autonomous robotic agents for conducting online transactions poses significant cybersecurity challenges. This study aims to enforce robust cybersecurity constraints to mitigate the risks associated with data breaches, transaction fraud, and system manipulation. The background focuses on the rise of LLM-driven robotic systems in e-commerce, finance, and service industries, alongside the vulnerabilities they introduce. A novel security architecture combining blockchain technology with multi-factor authentication (MFA) and real-time anomaly detection was implemented to safeguard transactions. Key performance metrics such as transaction integrity, response time, and breach detection accuracy were evaluated, showing improved security and system performance. The results highlight that the proposed architecture reduced fraudulent transactions by 90%, improved breach detection accuracy to 98%, and ensured secure transaction validation within a latency of 0.05 seconds. These findings emphasize the importance of cybersecurity in the deployment of LLM-driven robotic systems and suggest a framework adaptable to various online platforms.
Related papers
- Llama-3.1-FoundationAI-SecurityLLM-Base-8B Technical Report [50.268821168513654]
We present Foundation-Sec-8B, a cybersecurity-focused large language model (LLMs) built on the Llama 3.1 architecture.
We evaluate it across both established and new cybersecurity benchmarks, showing that it matches Llama 3.1-70B and GPT-4o-mini in certain cybersecurity-specific tasks.
By releasing our model to the public, we aim to accelerate progress and adoption of AI-driven tools in both public and private cybersecurity contexts.
arXiv Detail & Related papers (2025-04-28T08:41:12Z) - Assessing the influence of cybersecurity threats and risks on the adoption and growth of digital banking: a systematic literature review [0.0]
This study examines the influence of cybersecurity threats on digital banking security, adoption, and regulatory compliance.
It critically evaluates the most prevalent cyber threats targeting digital banking platforms, the effectiveness of modern security measures, and the role of regulatory frameworks in mitigating financial cybersecurity risks.
arXiv Detail & Related papers (2025-03-23T03:14:45Z) - Deep Learning Approaches for Anti-Money Laundering on Mobile Transactions: Review, Framework, and Directions [51.43521977132062]
Money laundering is a financial crime that obscures the origin of illicit funds.<n>The proliferation of mobile payment platforms and smart IoT devices has significantly complicated anti-money laundering investigations.<n>This paper conducts a comprehensive review of deep learning solutions and the challenges associated with their use in AML.
arXiv Detail & Related papers (2025-03-13T05:19:44Z) - Towards Zero Touch Networks: Cross-Layer Automated Security Solutions for 6G Wireless Networks [39.08784216413478]
This paper proposes an automated security framework targeting Physical Layer Authentication and Cross-Layer Intrusion Detection Systems.<n>The proposed framework employs drift-adaptive online learning techniques and a novel enhanced Successive Halving (SH)-based Automated ML (AutoML) method to automatically generate optimized ML models for dynamic networking environments.
arXiv Detail & Related papers (2025-02-28T01:16:11Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - Enhancing Enterprise Security with Zero Trust Architecture [0.0]
Zero Trust Architecture (ZTA) represents a transformative approach to modern cybersecurity.
ZTA shifts the security paradigm by assuming that no user, device, or system can be trusted by default.
This paper explores the key components of ZTA, such as identity and access management (IAM), micro-segmentation, continuous monitoring, and behavioral analytics.
arXiv Detail & Related papers (2024-10-23T21:53:16Z) - Blockchain-Based Trust and Transparency in Airline Reservation Systems using Microservices Architecture [1.03590082373586]
The study investigates the major components of blockchain technology such as decentralised databases, permanent records of transactions and transactional clauses executed via codes of programs.
The results show a 30% decrease in booking variations together with greater data synchronization as a result of consensus processes and resistant data formations.
The architecture of the system has no single point failure with over 98% reliability while measures taken to improve security have led to 85% of the customers expressing trust in the services provided.
arXiv Detail & Related papers (2024-10-18T14:58:22Z) - Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
Attacks against the Internet of Things (IoT) are rising as devices, applications, and interactions become more networked and integrated.
To efficiently secure IoT devices, real-time detection of intrusion systems is critical.
This paper investigates the latest research on machine learning-based intrusion detection strategies for IoT security.
arXiv Detail & Related papers (2024-10-01T19:24:34Z) - Securing Federated Learning with Control-Flow Attestation: A Novel Framework for Enhanced Integrity and Resilience against Adversarial Attacks [2.28438857884398]
Federated Learning (FL) as a distributed machine learning paradigm has introduced new cybersecurity challenges.
This study proposes an innovative security framework inspired by Control-Flow (CFA) mechanisms, traditionally used in cybersecurity.
We authenticate and verify the integrity of model updates across the network, effectively mitigating risks associated with model poisoning and adversarial interference.
arXiv Detail & Related papers (2024-03-15T04:03:34Z) - On the Vulnerability of LLM/VLM-Controlled Robotics [54.57914943017522]
We highlight vulnerabilities in robotic systems integrating large language models (LLMs) and vision-language models (VLMs) due to input modality sensitivities.<n>Our results show that simple input perturbations reduce task execution success rates by 22.2% and 14.6% in two representative LLM/VLM-controlled robotic systems.
arXiv Detail & Related papers (2024-02-15T22:01:45Z) - Purple Llama CyberSecEval: A Secure Coding Benchmark for Language Models [41.068780235482514]
This paper presents CyberSecEval, a comprehensive benchmark developed to help bolster the cybersecurity of Large Language Models (LLMs) employed as coding assistants.
CyberSecEval provides a thorough evaluation of LLMs in two crucial security domains: their propensity to generate insecure code and their level of compliance when asked to assist in cyberattacks.
arXiv Detail & Related papers (2023-12-07T22:07:54Z) - Robust Machine Learning Systems: Challenges, Current Trends,
Perspectives, and the Road Ahead [24.60052335548398]
Machine Learning (ML) techniques have been rapidly adopted by smart Cyber-Physical Systems (CPS) and Internet-of-Things (IoT)
They are vulnerable to various security and reliability threats, at both hardware and software levels, that compromise their accuracy.
This paper summarizes the prominent vulnerabilities of modern ML systems, highlights successful defenses and mitigation techniques against these vulnerabilities.
arXiv Detail & Related papers (2021-01-04T20:06:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.